Mapping the Inner Parsec of Quasars

Kelly Denney (Ohio State, USA)
Pat Hall (York, Canada)
Keith Horne (St. Andrews, UK)
Anna Pancoast (UC San Diego, USA)
Yue Shen* (U of Illinois, USA)
Chris Willott (Herzberg, Canada)
WHY YOU SHOULD CARE ABOUT QUASARS

DO YOU CARE ABOUT GALAXY EVOLUTION?

ARE YOU CURIOUS HOW SUPERMASSIVE BLACK HOLES GROW?

WHAT?!
BLACK HOLES = AWESOME

QUASARS HAPPEN TO ALL MASSIVE GALAXIES

BLACK HOLES GROW AS QUASARS

(thanks to xkcd.com)
Every massive galaxy hosts a supermassive black hole

100,000 light years

(Gueltekin+ 2009)
Goals of the High-z MSE Quasar Program

Measure black holes masses for ~2500 quasars up to z~3.

→ properly calibrate single epoch M_{BH} measurements for all quasars

Numbers to date: ~60
(to be improved, see Shen talk)

Map the inner parsec of 100s of quasars.

→ powerfully constrain accretion physics

Numbers to date: handful

Obtain extremely high S/N spectra of ~5000 quasars across the rest-frame optical-UV.

→ enable unprecedented studies of host galaxy properties, intervening absorption-lines, detailed emission line structure...

Numbers to date: <100

BONUS: High-z Hubble diagram for cosmology
Reverberation Mapping: Variability & Photoionization \rightarrow Distance

Continuum and emission line flux vary stochastically over time

Short timescale variability gives access to small spatial scales
Reverberation Mapping: Variability & Photoionization \rightarrow Distance

Continuum and emission line flux vary stochastically over time

Line variations track continuum variations with a time delay
Reverberation Mapping

\[c \times \text{delay} = R_{\text{line}} \]

Animation credit: K. D. Denney
Distance & Velocity → Black Hole Mass

Broad line region gas velocities are dominated by the black hole’s gravitational potential.

$$M_{BH} = f \frac{RV^2}{G}$$

Scale Factor Doppler Line Width
Time Delay

Approaching side
Velocity-Resolved Reverberation Mapping

NO MORE AVERAGING!

Time to Observer:

\[\Delta t_1 < \Delta t_3 < \Delta t_2 < \Delta t_4 \]

Animation credit: K. D. Denney
Multi-Line 2D Velocity-Delay Maps

\[\tau = \frac{R}{c} \left(1 + \sin i \cos \theta \right) \quad V = \sqrt{\frac{GM}{R}} \sin i \sin \theta \]
Applying RM: Single-Epoch BH Masses

The empirical $R_{\text{line}}-L_{\text{cont}}$ (radius-luminosity) relationship provides an opportunity to use L_{cont} as a proxy for the broad line region radius.

Applying RM: Single-Epoch BH Masses

The empirical $R_{\text{line}} - L_{\text{cont}}$ (radius-luminosity) relationship provides an opportunity to use L_{cont} as a proxy for the broad line region radius.

Single-epoch (SE) mass:

$$M_{BH} = f \frac{RV^2}{G}$$

ALL SE masses calibrated to Hβ.

(AGN Luminosity (5100A) vs. Hβ BLR Radius (light days))
Emission Lines Used for SE Masses

Composite from the Large Bright Quasar Survey (Francis et al. 1991)

ALL SE masses calibrated to Hβ.
Large Samples of M_{BH}

- Currently, **ALL** single epoch masses tied to Hβ
- MSE reverberation mapping program will be able to calibrate independent relationships for *every* major broad emission line used.
Wavelength coverage at $z=2$

Composite from the Large Bright Quasar Survey (Francis et al. 1991)
Broad Lines Accessible to MSE

CIV and Hβ: λ_{max} to 1.8 μm

λ_{max} to 1.3 μm
Wavelength coverage at $z=2$

Composite from the Large Bright Quasar Survey (Francis et al. 1991)
Specs for the High-z MSE Quasar Program

5000 quasars:

\[\rightarrow 7 \text{ fields, } \sim 700 \text{ quasars per } 1.5 \text{ deg}^2 \text{ field} \]

Repeat observations:

\[\rightarrow 100 \text{ epochs; cadence from days to months over } \sim 5 \text{ yrs} \]

Sensitivity (1 hr exposure):

\[\rightarrow S/N \sim 30 \text{ (10) } i=21.8 \text{ (23.25) } @ \text{ CIV for } z=2 \]

Accurate spectrophotometry:

\[\rightarrow 3-4\% \text{ (relative) accuracy across the bandpass} \]
Goals of the High-z MSE Quasar Program

Measure black holes masses for ~2500 quasars up to z~3.

Map the inner parsec of 100s of quasars.

Obtain extremely high S/N rest-frame optical-UV spectra of ~5000 quasars.

BONUS: High-z Hubble diagram for cosmology