Introduction

1. ESPaDOnS in one slide
2. Final acceptance tests in Toulouse
3. ESPaDOnS’s arrival at the summit
4. ESPaDOnS’s installation at CFHT
5. First light and other data from September
6. GUI
7. Libre-ESpRIT
8. Science chip...
9. What’s next?
1. ESPaDOnS in one slide

- Cross-dispersed echelle spectropolarimeter
- 40 orders, 369-1048nm, in one single exposure
- 15-20% throughput
- Data reduction software provided, Libre-ESpRIT

- Spectroscopy star only at R=81,000
- Spectroscopy star+sky at R=68,000
- Spectropolarimetry at R=68,000
 - Circular and linear polarimetry of lines

Nov. 12, 2004 SAC meeting

(ok, 2 slides)
2. Acceptance tests in Toulouse

- Test plan written in advance by OMP + CFHT
- Tests: May 24 – June 4, 2004
- Barrick, Szarlan, Vermulen, Manset + OMP
- A lot of work done: more developing, debugging, intensive testing
- Major issues found mostly software + other minor issues
- All issues had to be fixed and demonstrated before allowed to ship instrument – OK on June 23

3. ESPaDOnS’s arrival at the summit – July 12, 2004
Nov. 12, 2004 SAC meeting 7

Nov. 12, 2004 SAC meeting 8
4. ESPaDOnS’s installation at the summit

- August 2 – 19, 2004
- JF Donati, S. Baratchart (software), L. Pares (optics), L. Guesdon (electronics)
- G. Barrick, T. Szarlan, Ralph and daycrew, J. Ward, T. Vermulen, N. Manset
- Instrument put back together, integrated into CFHT’s network, aligned, tested again
5. First light and Sept. data

• First run E-nights: Sept. 2-3, photometric, very good seeing (0.6-0.8”)
• Second run E-nights: Sept. 23-24, photometric, bad seeing (1.0-1.4”)
• Data for 3 modes (polarimetry, high-res spectro, spectro), hot stars, cool stars, magnetic stars, binaries, stars with planets... Moon, twilight...
5.1 Guider

Offset guiding
Guiding on the target

5.2 Spectroscopy of EY Dra

EY Dra:
- M dwarf
- \(V = 11.8 \)
- K5

Spectroscopy:
- 6 slices, 24 px
- 4 slices (with sky), 12 px
- 300 sec
5.3 Spectropolarimetry of DF Tau

DF Tau:
- T Tauri star
- V~11 (var)
- K5

DF Tau 4x600sec
5.4 ADC test

Beta CrB
- spectroscopic bibary
- V=3.7
- 60 sec

5.5 Results from E-nights

- First light on the first night Sept. 2, 10pm!
- Acquisition and guiding (2 modes) work
- Mag~14-15 stars: seen with 0.5s exposures, guiding OK with 3 sec exposures
- Cass guiding also works
- Atmospheric Dispersion Corrector works (stars round, more flux; no spurious polarization, no attenuation)
- Exposure Meter, sensors, TCS, Libre-ESpRIT... work
- Throughput as expected within 0.5mag
• Guider camera efficiency too low?
• Problem with rhombs: stress birefringence in the cold – re-glued
• Intermittent noise on detector – solved
• detcom/Director crashes
• Retune servos for 3 motors
• Unexpected cross-talk (circular to linear)

6. GUI

• Designed by Donati & Manset, with input from other astros, Barrick
• Implemented by CFHT (Thomas, Vermulen, Lewis, Malan, Matsumoto)
• Uses some of the tools developed by OMP (graphical output)
• Uses scripts developed by OMP, then improved and adapted by CFHT
• Functions:
 1. Status of the instrument
 2. Control of all needed components
 3. Automation of observations (sequences)
Top Menu Bar

- Buttons presented in an logical, chronological order

Configure

- Configuration of the instrument is the first thing done during a night
- 3 Observation modes: Polarimetry, Spectroscopy star+sky, Higher Resolution Spectroscopy star only
- 4 CCD readout modes (speed): Fast (25s), Normal (40s), Slow (65s), XSlow (90s)
- AutoFocus capability: take pictures, measure, focus
Status

- Status of lamps, polarimeter, spectrograph, guiding camera
- Dynamic icons for visual information
- Feedback on global instrument status: Idle, Moving, Error...

Calibration

- Default settings for typical sequence
- Customizable by user
7. Libre-ESpRIT

- Data reduction software written and provided by Donati
- CFHT cannot distribute the source nor the executables; users have to reduce their data while at CFHT
- 4 main routines:
 1. geometry: locate and fit orders, fit slit
 2. wcal: wavelength calibration
 3. extract: optimal extraction of spectra
 4. polar: exposures combined to get polarization
Libre-ESpRIT

• CFHT will provide a simple display tool for reduced spectra (ascii files) [done]
• CFHT will consolidate existing scripts to extract information from output files (resolution, S/N, etc.) [ongoing]
• CFHT will write User Manual, with help from Donati [ongoing]

8. Science chip

• EEV1e currently used for tests is a Grade 5 chip with not quite optimal CTE, not quite optimal cosmetics, 33000 masked pixels
• EEV1 that was supposed to be used has degraded and has “hot clusters” that bleed; EEV1 has shown signs of instability too...
EEV1 30-min dark, top 4/5 of the chip...
- bad columns
- 3 hot clusters
- hot pixels

EEV1, top cluster
- 125 px wide
- 3 px high
- saturated
- bleeding upward
- bleeding to the right
- known hot pixels
EEV1e, 30-min dark, top 4/5 of the chip...

- 'star'
- 3 hot clusters
- bad columns
- 33,000 bad pixels currently masked
9. What’s next?

1. **WANTED**: EEV science chip
2. Software: finish **GUI**, finish session, +...
3. Optics: make sure all **rhombs** OK
4. Electronics: re-tune 3 motors
5. Finish engineering (Nov. 27-28)
6. Do commissioning (Nov. + Dec.)
7. **Documentation**: User’s Manual (instrument + Libre-ESpRIT), Maintenance Manual (for SAs, and software people)