MESURES DE VITESSES RADIALES DE GALAXIES APPARTENANT A DES GRANDES STRUCTURES

Au mois d'avril 1985, 2 nuits avaient été accordées au télescope de 3.6m du CFH équipé du spectrographe CASSHAWEC pour la mesure de vitesses radiales de galaxies. Deux programmes étaient concernés: le premier portant sur l'analyse dynamique et structurelle des amas, et le second sur l'étude d'une structure filamentaire appartenant au superamas Coma. Dans ces deux programmes, la difficulté majeure est l'acquisition d'un grand nombre de vitesses radiales (plusieurs dizaines, voire plus) d'objets étendus à faible brillance de surface et à raies d'absorption.

La mesure de vitesse radiale est alors utilisée soit dans un but "cosmographique", c'est à dire comme indicateur de distance permettant de "reconnaître" des structures (filaments, superamas...), soit dans un but dynamique, et l'on utilise alors la dispersion de vitesse des galaxies (éventuellement sa dépendance en fonction de la distance au centre de l'amas), pour une structure donnée.

La mission a rencontré un certain nombre de difficultés (mauvais temps, humidité, difficultés avec les logiciels, avec la télévision de pointage...) et 7 spectres seulement ont pu être obtenus.

Le spectrographe CASSHAWEC fonctionnait sur la voie rouge avec des dispersions de 39 et 78 Å/mm; nous avons en général utilisé, pour l'observation des galaxies, une fente ouverte à 194 µm.

Les objets étudiés avaient des magnitudes intégrées m_B de 14 à 16. Les temps d'intégration ont été choisis afin d'obtenir un rapport S/B de 5 à 10. Ces valeurs sont suffisantes pour obtenir la vitesse radiale en corélatant le spectre de la galaxie étudiée avec celui d'une étoile de référence, ici HD90861, géante K2III de magnitude m_V=8.36 (choisie dans la liste des standards de l'UAI), de vitesse radiale connue: +39.8 ± 0.4 km/s.

La réduction des données s'effectue à partir du format FITS par un ensemble de programmes issus de SPICA suivant deux étapes essentielles: d'abord une conversion du spectre en longueur d'onde grâce aux raies du mélange Fer-Néon du spectre de comparaison, et ensuite par une cross-corrélation portant sur le triplet vert du Magnésium. La précision des vitesses ainsi obtenues est de l'ordre de 50-100 km/s comme le confirme la réduction de missions effectuées aux Canaries (télescope 2.5m) et à l'ESO (télescope de 1.5m + IDS).

La figure 1 montre un des pics de corrélation obtenu par cross-corrélation de la galaxies A957-D36 avec l'étoile de référence (centrée sur les raies du triplet vert du MgI λ5172). La vitesse obtenue est 13.775 ± 75 km/s.

Malgré les difficultés rencontrées, nous avons montré qu'il était possible de mesurer des vitesses radiales de galaxies avec une bonne précision, de l'ordre de 50 km/s, mais nous voudrions insister sur le fait que de tels programmes ne pourront être poursuivis que dans la mesure où nous pourrons obtenir suffisamment de nuits d'observation.

A. Mazure

OBSERVATIONS DE MIRAGES GRAVITATIONNELS PAR ELECTRONOGRAPHIE AU CFH

Au cours des 4 dernières années, la photométrie précise de plusieurs Mirages Gravitationsnels (M.G.) a été effectuée au TCFH avec la caméra électronique à vanne au Foyer Primaire ou la caméra a focalisation magnétique au Foyer Cassegrain.

Des variations rapides de faible amplitude (0.03 mag. en 24 h) ont ainsi été mises en évidence pour les deux images de 0957+561 (Vanderriest et al., 1982, A.A., 110, L. 11).
L'étude photométrique de 2345+007 a renforcé son interprétation comme M.G.; un objet très faible (V = 24,9), pouvant être la galaxie-lentille, a été détecté entre les deux images (Sol et al., 1984, A.A. 132, 105).

Des résultats intéressants ont été également obtenus sur le "Quasar Triple" PG1115+080. L'analyse de clichés pris entre 1981 et 1985 montre que le quasar-source est variable par plus de 0,3 mag. Les variations des images A (Al + A2), B et C se produisent particulièrement en phase. On déduit des observations que les décalages temporels δt (A,B) et δt (A,C) sont inférieurs à 2,5 mois. En revanche, le rapport Al/A2, qui était voisin de 1,0 jusqu'au Mars 1984 a été mesuré à 1,38 en Mars 1985. A cette époque, il est resté constant à cette valeur pendant les 4 nuits d'observation. On en déduit |δt (Al,A2)| supérieur à 4 jours.

Ces observations apportent des contraintes aux modèles possibles. Elles indiquent que la mesure des décalages temporels dans PG1115+080 est possible au TCFH (Vanderriest et al., soumis pour publication).

C. Vanderriest

Figure 1. Changement du rapport observé pour les images Al et A2 de PG1115+080. Le rapport passe de 1,05 ± 0,08 le 26 Mars 1984 (a, "seeing" = 0,75") à 1,38 ± 0,05 le 19 Mars 1985 (b, "seeing" = 0,62").

Two 1 hour exposures (CFHT 3.6m telescope + RCA CCD) of a 40" x 40" region of the halo of M31 (40" from the nucleus of M31 along the minor axis). The first candidate RR Lyrae variable in M31 is marked near the center of the field. The magnitude of the variable is 24.5 in B at maximum, and > 1 magnitude fainter at minimum. It was identified by blinking, and is visible as a variable on two completely independent pairs of frames. (C. Pritchett and S. van den Bergh)
familiar astronomical objects). The slides have now been duplicated, labelled, and boxed for mailing to potential customers. A charge of $25 will be issued to those who wish a personal set, with the exception of CFHT employees, members of the Scientific Advisory Committee (SAC) or the Board of Directors (or other committees associated with CFHT), and professional astronomical institutions. Individual slides should not be removed without special permission, so that we avoid breaking up complete sets. Please contact Rick Crowe if you are interested in obtaining a set for yourself or for your institution.

CHANGEMENTS AU SEIN DU PERSONNEL

Suite à une série de démissions au cours du second semestre, le taux de rotation du personnel a été exceptionnellement élevé en 1985: William KRAEMER, qui a animé l'atelier de mécanique depuis 1982, a quitté Waimea au début de l'été pour donner suite à une offre lucrative en Floride; Daniel MICHEZ et Pierre GIGAN ont regagné la France en septembre; après une présence de quelque deux ans seulement au sein du groupe instrumentation: Walter SWIEDA a pris sa retraite en été, au terme d'une contribution de cinq ans à l'équipe d'entretien mécanique de l'observatoire; M. Khairy ABDEL-GAWAD, notre ingénieur manipulant le rassemblement du télescope sur le site en 1979, a rejoint l'observatoire de Kitt Peak en octobre; Peter WIZINOWICH, technicien en instrumentation optique depuis près de trois ans, a quitté Hawaii en décembre pour entreprendre un doctorat à l'Université d'Arizona.

Trois seulement parmi les sept postes devenus vacants en 1986 ont pu être pourvus avant la fin de l'année. Les nouveaux membres du personnel, tous recrutés en marge REQUESTED: Dominique SCHMITZ, qui avait déjà effectué un stage à l'Institut d'astronomie de l'université de Strasbourg, et Dominique SCHMITZ, qui avait déjà effectué un stage au TCFH au titre du service national français en 1983-84 et qui est revenu à Hawaii pour occuper un poste de technicien électronicien au site; Daniel SABIN, originaire du Massachusetts, qui a pris la responsabilité de l'anthracite de l'atelier de mécanique à Waimea; et Thomas GREGORY, qui a rejoint le poste de technicien électronicien après avoir exercé indépendamment la profession d'ingénieur en optique au Pays de Galles.

Au terme d'un séjour d'une année en qualité d'astronome invité, qui lui a notamment permis de contribuer de façon importante à la mise en œuvre des spectrographes Cassicam et UV Prisme, Gérard LEMAÎTRE a regagné l'Observatoire de Marseille durant l'été. Harvey RICHER a également achevé, en juillet, son année de congé sabbatique de l'Université de Colombie Britannique; sa présence au TCFH a été sanctionnée par une animation marquée.
VISITOR INSTRUMENTS

DAO Rad. Vel. Scan. 2 2 19
UH IPA CCD Camera 3 6 19
UV Prime Spec. 2 4 18
Valve Elec. Camera 2 3 13
UBC Paint Obj. Camera 2 3 12
UWO Polarimeter 1 1 8
Sub-mm Phot.(Lamarre) 1 1 7
Multiaperture Spec. 1 3 7
WF Elect. Camera 1 4 6
Speckle Cam.(Shara) 1 1 5
Multi-Slit Spec.(Foy) 1 1 5
Subtotal 17 29 119
TOTAL 49 85 325

The second table presents statistics for time lost for the 334 nights through November 30. These figures were compiled from the Observing Night Reports, which are completed by the Telescope Operator and verified by the observer at the end of each night. The weather has been poorer than average this year. The comparable figures for time lost to weather in 1983 are 11% and 14%, respectively.

Observing Time (Scienc. & Eng.) 70.5%
Time Lost to Weather 24.9%
Time Lost to CFHT Equipment 3.7%
Time Lost to Visitor Equipment 0.9%