AUTOMATED TELESCOPE BALANCE WEIGHTS

The telescope now has a semi-automatic balancing system. Its purpose is to relieve the mechanical crew of the drudgery of the old manual balancing technique and to make the telescope a little bit easier to use. The project was coordinated by John Kerr with contributions from Bill Cruise, Charlie Pomaski, Bob Song, and Peter Syderoff.

Once before, during the late 1970's, an attempt was made to automate part of the balancing task, but a faulty electronic circuit, paired with a power failure, could have created a potentially abnormal situation by accidentally driving the vertical weights of the telescope all the way up, making it top-heavy. Luckily, this was discovered during acceptance tests. Because of that incident, all of the computerized balancing of the telescope was postponed and most of the electronic control of the weights was disabled.

The telescope is held in balance by eleven counterweights distributed throughout the structure - four vertical and four horizontal weights above the Cassegrain environment to trim out movement in the declination axis and three weights in the horseshoe to trim out the right ascension axis. The old manual method of balancing involved manually slewing the telescope, one axis at a time, reading the current meters to try and determine the unbalanced torque, and then going up on the telescope to run individual balance weight drive motors for an estimated time period that hopefully positioned the weights to counteract the unbalanced torque. This process was repeated iteratively until the telescope was considered balanced.

With the new balancing system, the telescope control computer automates much of the old manual method. Upon issuance of a command at the telescope operator's console, the computer automatically slews the telescope in a given axis, plots the unbalanced torque and prints the suggested position of the weights in kilogram-meters. The operator can then enter a command to move the weights, as a group or individually, to the desired position and monitor their progress on a video screen. The process is still done iteratively, but much time can be saved by allowing so much control from the operator's console. When the user is finished, a hardcopy of the plots and configuration can be obtained to be placed into a binder for future reference.

A new feature of the balance system is on-line storage of the various instrument configurations. Some of the information captured for a specific configuration include balance weight positions and slewing limits. This enhancement will allow the user to preset the balance weights before the slewing and will make the telescope easier to operate because of the automatic slewing limits.

Perhaps in the future, the telescope can be completely balanced by a single command. Most of the pieces are in place already; only the problem of accidentally misplacing the weights remains to be overcome. In the meantime, the improvements in the balancing process have already had an effect by making the telescope quicker to balance and easier to operate.

J. Kerr

TELESCOPE ENCODER SYSTEM IMPROVEMENTS

The encoder subsystems of the Telescope Control System (TCS) are critical to all facets of successful observations. The absolute encoders provide the position reference for pointing the telescope at its target. The incremental encoders provide the feedback element in the tracking servo loop. Over the history of the telescope, the encoders have been one of the major sources of TCS problems. While encoder-related problems have been reduced, they have continued to be a negative factor in TCS reliability. A major effort has been mounted to minimize the problems by increasing encoder reliability and performance.

The microcomputer absolute encoder system was carefully studied to determine the cause of position jumps, or glitches. An error was found in the encoder turns counting algorithm, and has been corrected. New electronic circuit cards have been built by Adtech, an electronics firm in Honolulu, and these correct a few design errors in the original system. At present, the encoder system is providing reliable, glitch-free position information.

The encoders used for the absolute encoder subsystem have 16 bits of resolution. However, to be compatible with the original absolute encoder subsystem, only 15 bits were used. We are currently upgrading encoder electronics cards built by Adtech to take advantage of the additional bit of resolution. When installed, along with some software changes, the pointing resolution of the telescope will be improved by a factor of two. This will provide a resolution of 0.494 arcsecond for RA, and 0.659 for DEC. This increase in resolution should yield some improvements in the pointing model, and should provide better telescope performance for the average user.

The incremental encoders originally supplied with the telescope have been a major source of problems. Over the last two years, a program of scheduled
replacement has reduced effects on observations. However, each removed encoder must be repaired at a cost of $2500 and a repair time of 4-6 weeks. With no spare during this repair interval, the potential for a catastrophe was high.

Several solutions were evaluated. Instead of buying a fourth encoder of the original type for $15,000, 4 new encoders of an improved type were purchased for only $5,500 each. These encoders use LED illumination, and should operate for several years without maintenance. As these encoders differed mechanically from the originals, new mounts were required. An analysis of potential mechanical errors was made, and the new encoder mounts were designed to eliminate or minimize such errors.

Two mounts have been finished, and installed on the HA axis. Before being put into service, a test program evaluated the performance of the encoder. It was determined that the performance was governed by the cleanliness of the drive area on the outer edge of the horseshoe. A thorough manual cleaning was undertaken, and a cleaning system was added to the encoder mount to continually clean this surface. The first encoder has been in service for one month, and has performed perfectly (which is to say that no one noticed the change).

The next major project for the Mechanical Group will be to fit mounts for the new encoders on the DEC axis. Until then, we will operate using the old encoder.

With two encoders installed on the HA axis, several possibilities exist for further improved telescope operation. Initially, the availability of an installed spare will be the only advantage. Next, a separate data-logging computer will be used to analyze differences between the two encoders, and look for problems. The final step will be to have the Encoder group average the outputs of the two encoders. This will reduce errors caused by irregularities of the horseshoe or the individual encoder mountings.

W. Cruise

Les demandes de temps d'observation avec le Telescope Canada-France-Hawaii doivent être soumises aux agences associées. L'attribution de temps, sur une base compétitive, est effectuée deux fois par année: une fois pour le premier semestre (janvier à juin) et une fois pour le deuxième semestre (juillet à décembre). Les adresses postales et les délais de soumission sont indiqués ci-après pour chacune des trois agences.

AGENCE CANADIENNE

Comité canadien de demandes CPH
c/o M. le Directeur
Institut Herzberg d'astrophysique
Conseil national de recherches Canada
Ottawa, Ontario
CANADA K1A 0R6

DATES LIMITES (cachet de la poste):
Pour le premier semestre - 15 août
Pour le deuxième semestre - 15 février

AGENCE FRANÇAISE

M. le Directeur
Institut National des Sciences de l'Univers
77, avenue Denfert-Rochereau
75014 Paris
FRANCE

DATES LIMITES (date de réception):
Pour le premier semestre - 1er septembre
Pour le deuxième semestre - 1er mars

UNIVERSITÉ D'HAWAI'I

Director
Institute for Astronomy
2680 Woodlawn Drive
Honolulu, Hawaii 96822
U.S.A.

DATES LIMITES (date de réception):
Pour le premier semestre - 31 juillet
Pour le deuxième semestre - 31 janvier

Requests for observing time on the Canada-France-Hawaii Telescope are made to the member agencies. There are two competitions per year—one for the first semester (January-June) and the other for the second semester (July-December). The mailing addresses and deadlines for proposal submission are given below for each of the three agencies.

CANADIAN AGENCY

Canadian Applications Committee CFHT
c/o Director Herzberg Institute of Astrophysics
National Research Council Canada
Ottawa, Ontario
CANADA K1A 0R6

DEADLINES (Postmark date):
For time in first semester - August 15
For time in second semester - February 15

FRENCH AGENCY

Institut National des Sciences de l'Univers
M. le Directeur
77, avenue Denfert-Rochereau
75014 Paris
FRANCE

DEADLINES (Date of receipt):
For time in first semester - September 1
For time in second semester - March 1

UNIVERSITY OF HAWAII

Director
Institute for Astronomy
2680 Woodlawn Drive
Honolulu, Hawaii 96822
U.S.A.

DEADLINES (Date of receipt):
For time in first semester - July 31
For time in second semester - January 31