The numbers of z~2 star-forming and passive galaxies in 2.5 square degrees of deep CFHT imaging

Liz Arcila-Osejo & Marcin Sawicki, submitted to MNRAS CFHT UM 2013

Why are we doing this?

http://www.mpa-garching.mpg.de/

Hopkins and Beacom 2006

Color-Color Selection Techniques

Lyman Break Galaxy (Steidel et al. 1996, 2003)

BzK_s Selection Criteria (Daddi et al., 2004)

Extremely Red Objects (Lockwood, 1970, Thompson et al., 1999)

The BzK_s Selection is a selection criteria able to select *and* distinguish between Star-Forming and Passive Galaxies at z^2

Data: CFHTLS and WIRDS

CFHTLS Deep fields	
D1 - 1 x 1 square degree 02:25:59 -04:29:40 2000 <i>In W1</i>	
D2 - 1 x 1 square degree 10:00:28 02:12:30 2000 On the COSMOS/ACS survey field	
D3 - 1 x 1 square degree 14:19:27 +52:40:56 2000 <i>In W3</i>	
D4 - 1 x 1 square degree 22:15:31 -17:43:56 2000 Around the quasar LBQS2212-17	

The BzK_s Selection Criteria

Daddi et al. 2004, Reddy et al. 2006, Kong et al. 2006, Lane et al. 2007, Blanc et al. 2008, Panella et al. 2009, Hartley et al. 2010, McCracken et al. 2010, Bielby et al. 2012

From BzK_s to gzK_s

Model SF-Galaxies

- a. GALAXEV Library.
- b. CSF models with ages between 10⁻³ and 2 Gyr.
- c. E(B-V)=0,0.3,0.6

- Model PE-Galaxies
 - a. GALAXEV Library.
 - b. SSP models with ages between 0.1 and 2 Gyr.
 - c. E(B-V)=0

gzHK_s Selection

CFHTLS D3 gzK_s [K $_s$ < 23.5]

- a. g-band not deep enough.
- Black arrows in the star-forming region could actually be passive galaxies

gzHK_s Selection

Our results in numbers

Field	Effective Area [deg ²]	E(B-V)	All objects	gzHK	PE-gzHK	SF-gzHK
D1	0.68	0.0254	55,256	11,258–12,281	1,382	9,972–11,004
D2	0.89	0.0162	87,206	12,238-15,222	1,739	10,880-13,835
D3	0.45	0.0072	37,380	7,046–7,668	841	6,223-6,845
D4	0.45	0.0275	38,461	7,312-8,168	1,013	6,361–7,226

Total Effective Area ~ 2.5 deg²

Four independent lines of sight

~ 40 000 High-z Galaxies out of which ~ 5000 Passive Galaxies

z~2 Galaxy Number counts from CFHT and previous results

Number Counts CFHTLS SF Galaxies D1-4 Fields

- How many galaxies in 1 deg²/0.5 mag.
- Our results are consistent with those of previous surveys.
 - We have better statistics.
- Variations from field-to-field: Cosmic Variance

Galaxy Number counts from CFHT and previous results

- Results are also consistent.
- We observe a peak AND a turnover.
- Consistent with downsizing.

Number Counts CFHTLS PE Galaxies D1-4 Fields

z~2 Luminosity Function

Luminosity Function, CFHTLS gzHK_s

z~2 Stellar Mass Functions

Mass and Environmental Quenching

- SMF at z~0 is composed by two Schechter functions: Mass Quenching and Environmental Quenching.
- Mass Quenching (MQ) is more efficient at high-z and for massive systems.
- Our results show the imprints of MQ at z~2.
- At lower-z EQ becomes more effective.

Summary

- A. Large Sample: Estimate of how cosmic variance can influence our results.
- B. Mass and Environment Quenching Scenarios.
- C. Mass Quenching mechanism that may be universal and already at place at z~2.