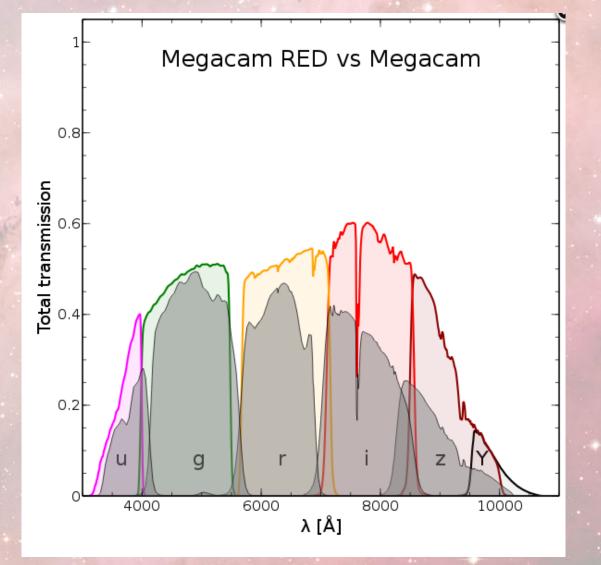
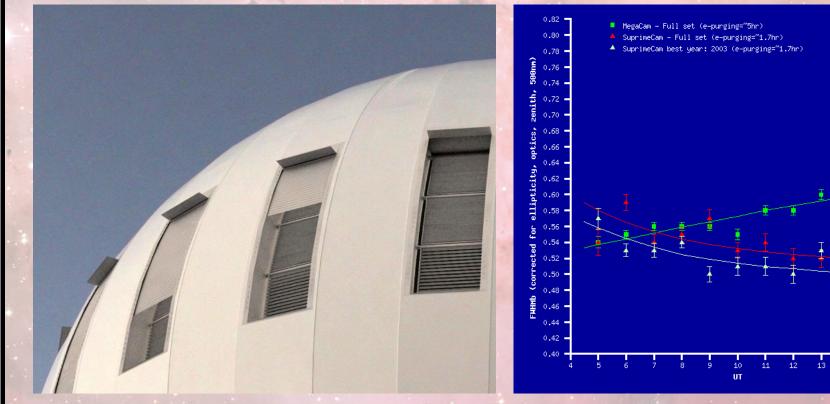

NegaCam **Red Enhanced Detectors**


... and Euclid

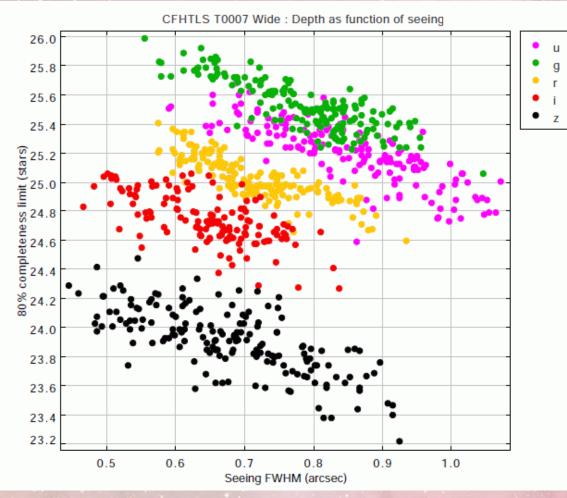
Advances in detector & coating technology over the past decade


e2v 42-90 deep depletion: pin, electrically, and mechanically 100% identical to 1998 version

Advances in filter technology over the past decade

DECam filters response used for MegaCam RED Overall gain in zero-points: u=0.2, g=0.1, r=0.4, i=0.5, z=0.6 mag.

Dome venting (2013)

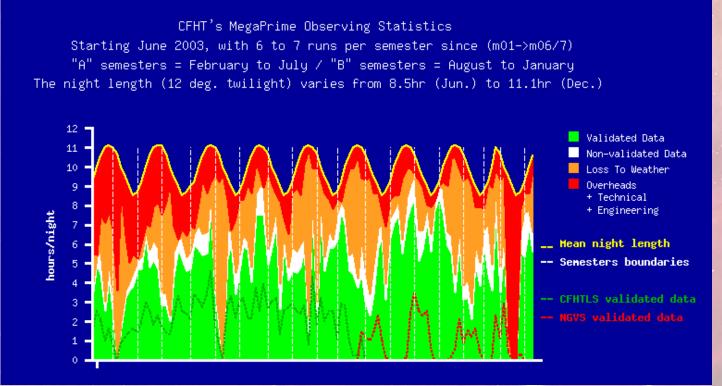


Full integration: fall 2013

Matching Subaru's performance: 0.1" gain

Not just a gain in absolute: the IQ will get far more uniform throughout the night

Optimization of the observing process (SNR QSO, 2013)



MegaCam IQ distribution

CFHTLS Wide depth vs image quality at fixed exposure times

The end result is a uniform depth for a survey designed with the median IQ

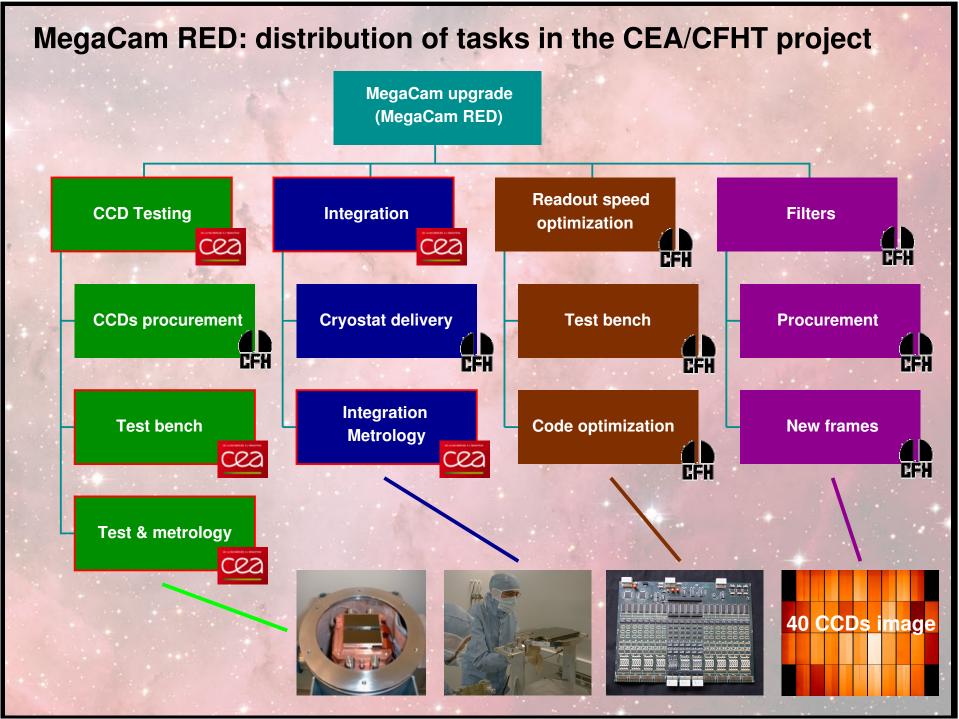
Planning with real weather statistics

10 years of MegaCam observing: 5 hours per night of validation PIs/LPs

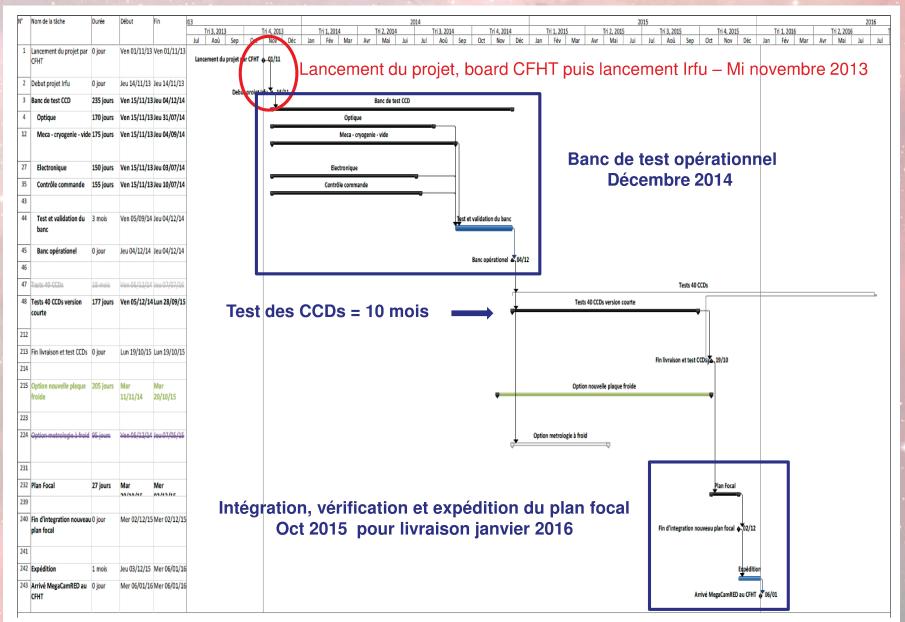
Considering the past decade conditions, mapping a large contiguous sky area with limited slews lead to 6.3 hours per night of QSO validation.

Mapping the Euclid north galactic cap: 7,500 sq.deg. in g, r, i, z

Filter	Extended sources SNR=7	1	Point sources SNR=5
g r	24.7 24.0	1	25.5 25.0
i	23.3	Í.	24.4
z	22.9	I.	23.9


Depth requirements for the Euclid ground survey

	I	g	r	i	z		Intg.	I	Nights	I	Years	١	Fraction 6 Years
-													94% (No venting) 80% z' compromised
MegaCam RED	Ι	939	694	537	437	I	2607	I	1117	I	3.1	١	^{51%} (x 1.6 MC vented)


Global time envelope

MegaCam RED could use bright time in extended observing runs (months)

Adding a u-band component (24.1 SNR=5) adds ~700 hours (+25%)

Schedule at CEA IRFU: November 2013 – January 2016

and the second second

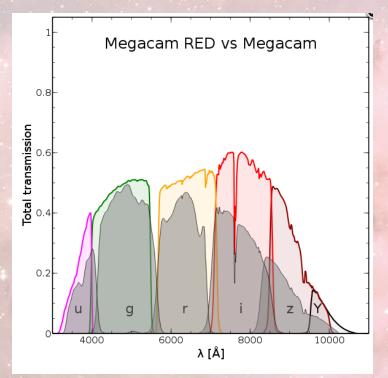
CEA IRFU cost center

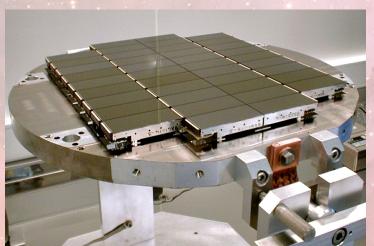
		Coût en k€		
Systèmes	2014	2015	2016]
Banc de test	222	8	0	1
Integration Plan Focal	0	20		1
Garantie - assurance	0	17,4	0	à confirmer
Missions				
Relation industrielle	2,5	0,5	0	
CDD				
Developpement electronique	35	0	0	
TOTAL :	259,5	45,9	0	305 = \$400k
Options]
Nouvelles plaque froide	0	28,5	0	
Métrologie mosaïque à froid	0	5,5	0	
TOTAL avec les options :	259,5	79,9	0	339
Main d'œuvre CEA	60	257	174	
	00		1/4	491 = \$642k in-kind
Provision pour risque]
Franchise assurance CCD *	0	14,5	0	
*Cours du dollard considéré	0 7637			_

*Cours du dollard considéré

Schedule and manpower at CFHT: November 2013 – January 2016

CFHT manpower estimate									
		duration	man						
FTE estimates	per month	(months)	months						
Project management	0.2	27	5.4						
CCD procurement	1	2	2						
Filter procurement	1	2	2						
Readout speed improvement -software	0.5	12	6						
Readout speed improvement -hardware	0.5	13	6.5						
MegaCam disassembly/shipping prep	2	0.4	0.8						
MegaCam assembly	2	0.25	0.5						
MegaCam test	2	0.5	1						
Total manpower (man months)			24.2						


D	Task Name	Duration	Start		1								
					2014				2015				2016
				4th Quarter	1st Quarter	2nd Quarter	3rd Quarter Jul Aug Sep	4th Quarter	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter Oct Nov Dec	1st Quarter
1	Project management	583 days	Mon 11/4/13		Jan Feb Mar	Apr May Jun	Jui Aug Sep	OCI NOV Dec	Jan Feb Mar	Apr May Jun	Jui Aug Sep	OCI NOV Dec	Jan Feb Mar
·	Project management	Job uays	101111/4/15	•									×
2	CCD contract and procurment	46 days	Mon 11/4/13		1								
3	Filter procurement and delivery	180 days	Tue 1/7/14		č)						
4	Readout speed improvement	280 days	Mon 11/4/13										
5	PCB fabrication	20 days	Mon 11/4/13										
6	PCB asssembly	20 days	Mon 12/2/13										
7	SLINK interface dvelopment	120 days	Mon 12/30/13										
8	Readout optimization/ test	120 days	Mon 6/16/14			Č							
9	MegaCam disassembly/shipping to CEA	10 days	Mon 9/21/15								•		
10	MegaCam return	1 day	Wed 1/6/16										1
11	MegaCam reassembly	5 days	Thu 1/7/16										1
12	MegaCam test	10 days	Thu 1/14/16										ð


CFHT cost center

	CFHT cost estimate			
_				
Test cryostat	Equipment	Qty	Price	Cost
	Driver PCB	2	500	100
	SHARC PCB	2	250	50
	Readout PCB	2	300	60
	Parts/cables/connector/chassis	lot		100
	Next gen SLINK	1 pair	1000	100
	Computer	1	1000	100
	Contingency			400
	Subtotal			910
Filters	u	1	70000	7000
	g	1	35000	3500
	r	1	35000	3500
	i	1	35000	3500
	Z	1	35000	3500
	Y	1	19000	1900
	filter holders	6	100	60
	Subtotal			22960
CCDs	CCD42-90 science grade DD G1-AM2	40	47500	190000
	Subtotal			190000
Travel	Integration & test @ CFHT	2	6200	1240
nuver	Meeting @ CEA	2	6200	
	Meeting @ e2V	3	500	
	Subtotal			2630
	Justotai			2030
Shipping to ar	nd from CEA	2	2000	400
	Subtotal			400
	Total cost (USD)			216900

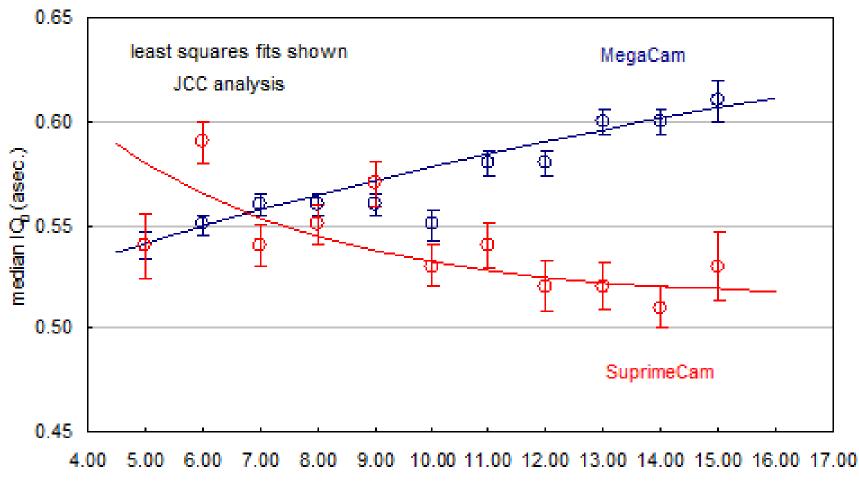
MegaCam RED grand total: CEA+CFHT: \$2,569,000 including 10% contingency for low risk

MegaCam RED: a CEA/CFHT project building on CFHT's strengths

MegaCam RED grand total: CEA+CFHT: \$2,569,000

Low risk Low complexity Fast track: first light Jan. 2016 No MegaCam for 3 months in 15B High scientific return potential Superb 0.6" survey machine Large established community

Project lead: J.–C. Cuillandre Project manager CEA: R. Granelli Project manager CFHT: K. Ho Inst. scientist CEA: O. Boulade Co–I Canada: R. Carlberg Co–I France: Y. Mellier


Megacam RED Science

Megacam RED QE Every band gets Better

Camera/CCD	u	g	r	i	Z	Y
MegaCam e2v	55%	85%	80%	55%	25%	0%
MegaCam e2v AM2	60%	90%	90%	90%	65%	15%
PS1/2 MIT/LL	0%	50%	85%	95%	90%	40%
DECam LBNL	20%	70%	85%	90%	85%	20%
HSC Matsushita	15%	85%	95%	90%	75%	15%
LSST (e2v base)	25%	85%	92%	90%	65%	15%

No other current or planned camera has comparable u band response. A unique capability for at least a decade.

Dome venting will improve IQ

Site Figure of Merit: **natural seeing** (TMT site testing data) M~clear/IQ²

Visible

Tololo0.343Mauna Kea* (TMT)0.675Armazones1.000

Has interesting implications for DECam vs CFHT

CFHT Megacam-Red: Everyone wins

- Dome venting (at last):
 - Conservatively, Subaru quality images
 - Possibly better.
- Chip upgrade: no losers
 - i band gain is 2.5x science speed (with IQ)
 - Low cost, low risk in the single most used capability of CFHT.
- Important to keep CFHT productive

A Wide Field ugriz survey now

- Along with DES provides the first ever deep, all high latitude sky imaging, CFHT: unique u band.
- Science is very broad
 - Milky Way tomography (u implements [Fe/H])
 - 30x volume of SDSS in north
 - Hot stars (WDs, OB stars in other galaxies)
 - Galaxy clusters (photo-z, strong lenses, Planck)
 - w indicator, cluster physics, galaxy environments at redshift
 - Galaxy evolution (with u band SFR, drop-outs)
 - Study to z~3, vast increase beyond SDSS low z.
 - AGN: search for the rare in the sky
 - Fainter than SDSS at z~6+, TMT/E-ELT relevant for IGM
 - Weak lensing (better IQ?, better photo-z with u)
 - First glimpse of Euclid science
 - Supernovae* (SNLS to z~1.1)
 - add-on survey? DE and Sne science, metal evolution
 - The biggest possible legacy dataset
 - Participation in the international all-sky OIR mapping program.

Opportunities for collaboration with other telescopes

- Subaru, PS & DES (efficiency, calibration)
- CHIME (low res HI mapper, BAO) LOFAR?
- MS-DESI Spectra ~BigBOSS (2019)
- eROSITA soft x-ray (Russia has north)
- Possible route into LSST
- Targets for JWST (2018)
- Euclid

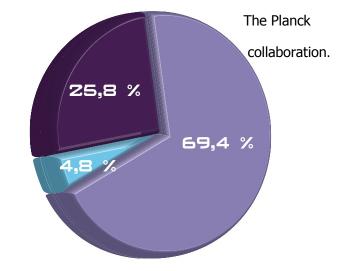
A significant CFHT time decision Euclid Ground @ CFHT

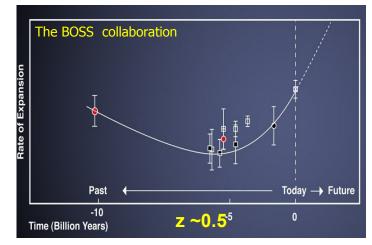
	I	g	r	i	z	I	Intg.	Nights	Years Fraction 6 Years
MegaCam MegaCam Vented	 	1250 1041	1000 819	1075 926	1800 1428		5125 4214	2064 1746	5.7 94% (No venting) 4.8 80% (Subaru perf.)
MegaCam RED 0 MegaCam RED 1 MegaCam RED 2 MegaCam RED 3	 	1068 939 850 781	820 694 621 578	614 537 477 431	498 437 388 349	 	3000 2607 2336 2139	1254 1117 1022 954	3.4 57% (No venting) 3.1 51% (Subaru perf.) 2.8 47% (CFHT best) 2.6 44% (Full optimal)

Adding u band adds 0-25% more time. Euclid analysis needs to be re-evaluated with u Total is ~3.5 yrs, 100% allocation if at Subaru IQ Should leave some time for PI science (leveraging)

CFHT Survival Issues

- National astronomy programs elsewhere are sacrificing 4m telescopes
- Survivors (AAT) are largely survey dedicated.
- In Canada, NRC supports:
 - TMT funding request for 2014 (first light 2022)
 - SKA request expected in 2016
 - No short term transformation opportunity
 - Important to keep CFHT for students, PDFs

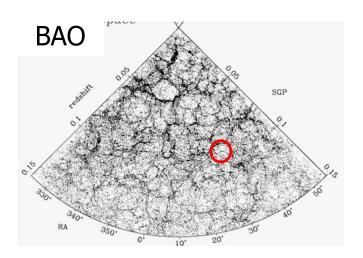

CFHT and MegaCam RED in the Euclid era...

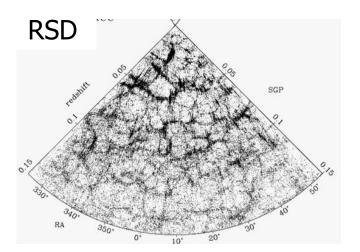

Mellier

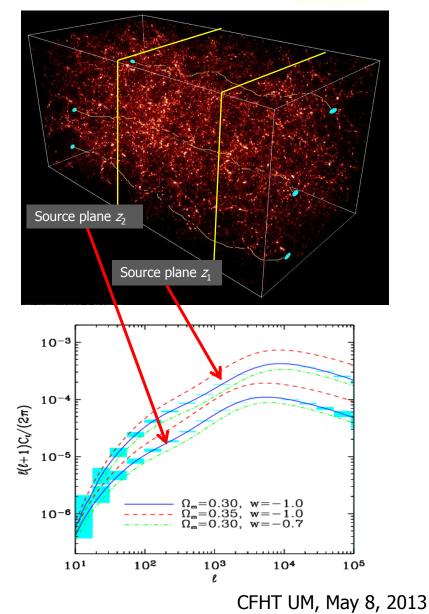
Digging the dark in the Planck universe

- Why a Universe in accelerating expansion?
 Origin: dark energy ? modified gravity ?
- When did the DE-DM transition happen?
 - \rightarrow Distinguish DE, MG, DM effects by:
 - Using >2 independent probes (Euclid=5)
 - Tracking signatures on
 - Geometry of the Universe:
 - Weak Lensing, Galaxy Clustering,
 - History of structure formation:
 - WL, Redshift-Space Distortion, Clusters of Galaxies

 \rightarrow Need:control very accurately systematics.




Transition very late, can be explored with visible+NIR telescopes \rightarrow Euclid


BAO, RSD and WL over 15,000 deg²

50 million galaxies with redshifts

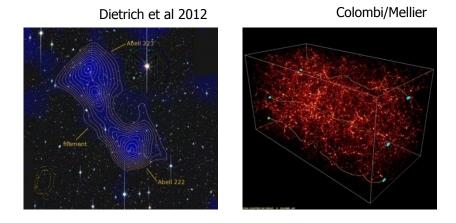
1.5 billion sources with shapes, 10 slices

Euclid

Visible + NIR data needed for Euclid

- Weak Lensing : redshifts of 2 10⁹ sources to
 - Slice the universe
 - Control contamination by intrinsic alignments of galaxies
- Redshifts of Euclid clusters:
 (60,000 clusters, 5,000 giant arcs)
 → synergy with Planck and eROSITA
- Redshifts of sources and lenses needed at least in the range 0.2<z<2
- → Photo-z necessary, but with both Optical+NIR data

HST/ACS credit NASA/ESA



HST/ACS; credit NASA/ESA

Galaxy halos

Clusters of galaxies

Filaments between clusters

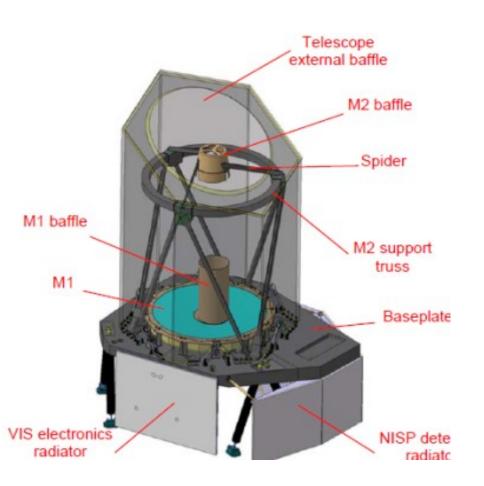
Cosmic shear

CFHT UM, May 8, 2013

Euclid: mission implementation

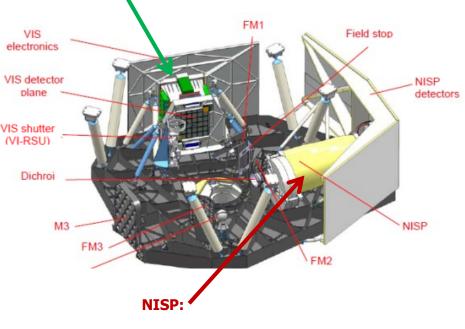
Euclid mission baseline: Launch in 2020

Photo-z: Ground based Photometry								
and Spectroscopy		SURVE	SURVEYS In ~6 years					
	Area (deg2)		_	Description				
Wide Survey	15,000 de	g ²	Step and stare w	vith 4 dither p	ointings per step.			
Deep Survey	40 deg² In at least 2 patches of > 10 deg ² 2 magnitudes deeper than wide survey							
PAYLOAD								
Telescope		1.2 m Korsch	, 3 mirror anastig	gmat, f=24.5	m			
Instrument	VIS			NISP				
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		0.76	3×0.722 deg ²				
Capability	Visual Imaging	NIR	Imaging Photom	etry	NIR Spectroscopy			
Wavelength range	550– 900 nm	Y (920- 1146nm),	J (1146-1372 nm)	H (1372- 2000nm)	1100-2000 nm			
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	3 10 ⁻¹⁶ erg cm-2 s-1			
	10σ extended source	5σ point	5σ point	5σ point	3.5σ unresolved line			
	SourcesourcesourcesourcefluxShapes + Photo-z of $\underline{n} = 1.5 \times 10^9$ galaxiesz of $n=5\times 10^7$ galaxies							


Possibility other surveys: SN and/or μ -lens surveys, Milky Way ?

Ref: Euclid RB Laureijs et al arXiv:1110.3193

Euclid: telescope and instrument


Courtesy: Astrium and ESA Project office

- Stabilisation: pointing error x,y axes= 25mas over 700 s.
- FoV: Common visible and NIR Fov $= 0.54 \text{ deg}^2$

VIS:

large area imager – a 'shape measurement machine' 36 4kx4k CCDs with 12 micron pixels 0.1 arcsec pixels on sky bandpass 550-900 nm – narrow band channel limiting magnitude for wide survey of magAB = 24.5 for 10σ data volume – 520Gbit/day

16 2kx2k H2GR NIR detectors , 0.3 arcsec/pixel

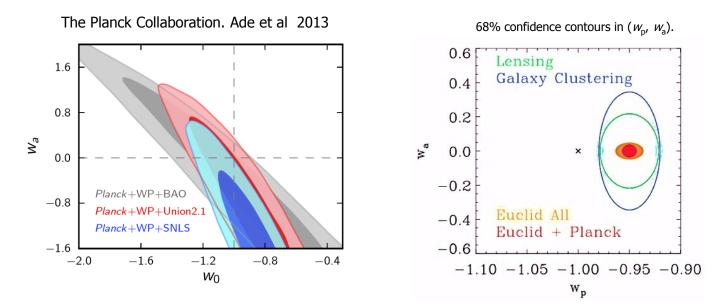
3 NIR filters: H,J,H, 4 Grisms (2 « B»; 2 « R »)

Lim. mag: AB 24.0 ; 5 σ pt source

Data volume:180 Gbit/day

CFHT UM, May 8, 2013

Euclid


Simulation of M51 with VIS

Euclid will get the resolution of Sloan Digital Sky Survey but at z=1 instead of z=0.05. Euclid will be 3 magnitudes deeper \rightarrow Euclid Legacy = Super-Sloan Survey

Eu lid Consortium

Forecasts: Euclid cosmology programme

	Modified Gravity	Dark Matter	Dark Energy		
Parameter	γ	m _v /eV	w _p	W _a	FoM
Euclid primary (WL+GC)	0.010	0.027	0.015	0.150	430
Euclid All	0.009	0.020	0.013	0.048	1540
Euclid+Planck	0.007	0.019	0.007	0.035	4020
Current (2009)	0.200	0.580	0.100	1.500	~10
Improvement Factor	30	30	>10	>40	>400

Ref: Euclid RB arXiv:1110.3193

Assume systematic errors are under control

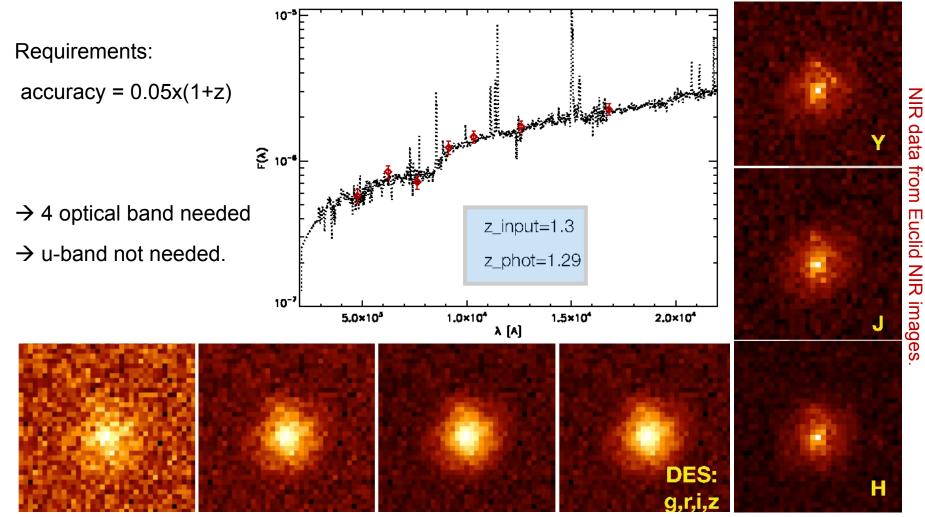
CFHT UM, May 8, 2013

Euclid Legacy

- 12 billion sources ,3-σ
- 50 million redshifts;
- A mine of images and spectra for the community for several decades;
- A reservoir of targets for JWST, GAIA, E-ELT, TMT, ALMA, Subaru, VLT, ngCFHT, etc...
- Synergy with LSST, e-ROSITA, SKA

Objects	Euclid	Before Euclid
Galaxies at 1 <z<3 with<br="">precise mass measurement</z<3>	~2x10 ⁸	~5x10 ⁶
Massive galaxies (1 <z<3))< th=""><th>Few hundreds</th><th>Few tenss</th></z<3))<>	Few hundreds	Few tenss
Hα Emitters with metal abundance measurements at z~2-3	~4x10 ⁷ /10 ⁴	~10 ⁴ /~10 ² ?
Galaxies in clusters of galaxies at z>1	~2x10 ⁴	~10 ³ ?
Active Galactic Nuclei galaxies (0.7 <z<2)< th=""><th>~104</th><th><10³</th></z<2)<>	~104	<10 ³
Dwarf galaxies	~ 10⁵	
T _{eff} ∼400K Y dwarfs	~few 10 ²	<10
Lensing galaxies with arc and rings	~300,000	~10-100
Quasars at z > 8	~30	None

Gravitational arcs and rings in Euclid



Euclid: ground based data and MegaCam RED option

Ground Based Data: photo-z with Euclid

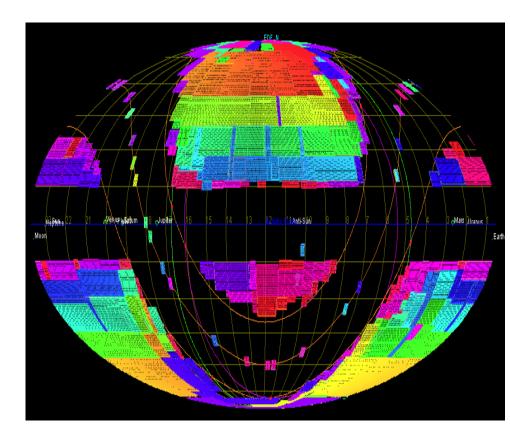
Visible data obtained from ground based telescopes

Euclid

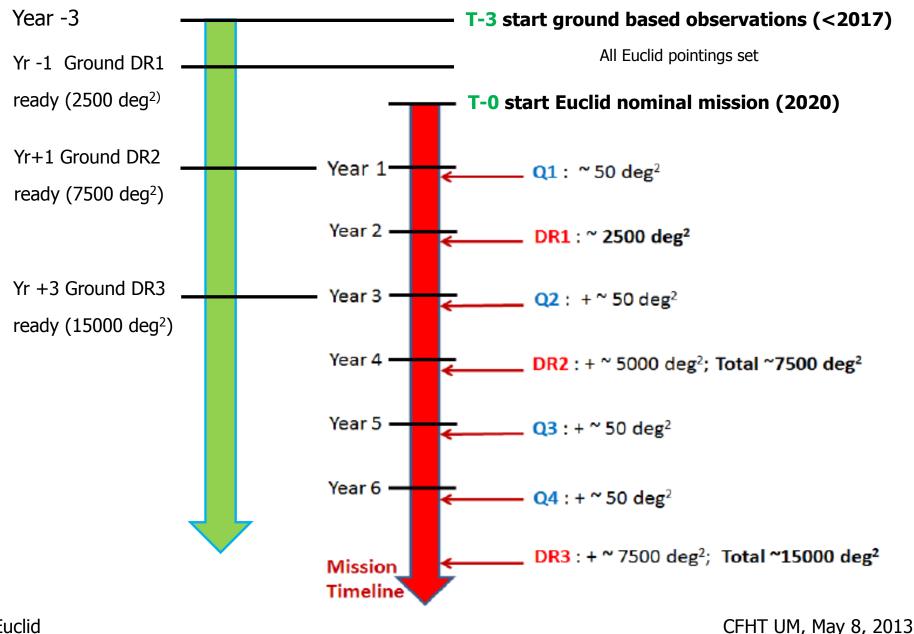
Ground Based Data: photo-z

• South: consolidated:

DES data deep enough in g,r,i,z .
 Suits Euclid needs;


 EC will reprocessed DES data after the 1yr-proprietary period

• North: Not consolidated:


 Pan-STARRS: CCD procurement problems, less time allocated to Euclid. If Canada in , then PS still needs 8 M USD from Euclid;

• MegaCam-RED: looks promising C+F project → RECOMMENDED by Euclid Board → Canada interested?

 \circ HSC/Subaru → Conflicts with PFS?

Eu Data release model: Euclid + ground esa

Euclid

MegaCam RED, Euclid and Canada

- What could be the contribution of Canada?
 - Participation to MegaCam RED survey(grey + dark) time for ~7yrs
 - MegaCam RED survey archived at CADC
 - Participation to the processing of the MegaCam RED survey
- Interesting option:
 - Canada leads a survey comprising some photometric data that are not essential to Euclid, but most useful for MegaCam RED stand alone science :
 - \rightarrow u-band?
 - → Euclid to meet 0.03x(1+z) accuracy on photo-z.