

CFHT/WIRCam pixel

I. Baraffe G. Chabrier T. Forveille S. Metchev P. Tremblin

Observables

photometry spectra

proper motions

Physical Properties

absolute flux, luminosity, mass kinematics

H-R Diagram (Russell 1914)

began in 2007 as my PhD thesis at IfA

WIRCam's image quality & CFHT queue scheduling are ideal for astrometric monitoring

longest running IR parallax program

>500 objects monitored

Empirical H-fusionUnusually lowmassoccentricitiesYoung brown dwarfsDos as clocks:Li-depictionDos as clocks:mass boundaryDos as clocks:mass boundaryage distributionIndividual dynamical massesCooling tracks

Mass-coded CMD

Mass-calibrated SpT— T_{eff} relation

Ultracool Dwarf Parallaxes c. 2012

N ~ 300, but almost all **old objects**

Other parallaxes: Dieterich+2014, Dittman+2014, Ducourant+2008, Ducourant+2014, Faherty+2012, Gatewood & Coban 2009, Marocco+2013, Riedel+2014, Vrba+2004, Wahhaj+2011, Weinberger+2013

Spectroscopic gravity signatures evolve with age.

time

CFHT/WIRCam discovery of a wide "planet"

2MASS J0249 c (Dupuy, Liu et al. 2018)

2MASS J0249AB BD binary in β Pic

Credit: Keck Imaginarium

https://exoplanets.nasa.gov/alien-worlds/exoplanet-travel-bureau/

Empirical H-fusion
mass boundaryUnusually low
eccentricitiesYoung brown dwarfs
Li-depletion
mass boundaryBDs as clocks:
ace distributionIndividual dynamical masses
cooling tracksIncention
incention

Mass-coded CMD

Mass-calibrated SpT— T_{eff} relation

Relative Astrometry Gives Total Mass

Kepler

relative orbit (AO data)

$$M_{\rm tot} = a^3 / P^2$$

absolute orbit

 $M_{tot} = a^3/P^2$ $M_1 = M_{tot} (a_2/a)$ $M_2 = M_{tot} (a_1/a)$

 \star

\bigstar

WIRCAM imaging

→ First individual masses for field L & T dwarfs

The mass-luminosity relation is shallow at the L/T transition.

Dupuy, Liu & Ireland (2015) Dupuy & Liu (2017)

Dupuy & Liu (2017)

First Empirical Substellar Boundary

Mass-Magnitude-Metallicity Relation

Brown Dwarfs as Clocks

New Science Enabled with Extended Time Baseline

large CFHT/WIRCam wobble relative to Keck AO orbit → T dwarf companion is massive

New Science Enabled with Extended Time Baseline

→ find companions via WIRCam astrometric wobble

Large Program: New Science with Extended Time Baseline

→ find companions via WIRCam astrometric wobble

CFHT Infrared Parallax Program

WIRCam is the leader in IR astrometry thanks to image quality, queue scheduling, stability & baseline.

Continues to play a leading role in the connection between BDs and exoplanets, discovering planetarymass objects, and measuring dynamical masses.

WIRCam astrometry is a <u>unique</u> resource that offers multiple synergies with *Gaia* and *JWST* science.