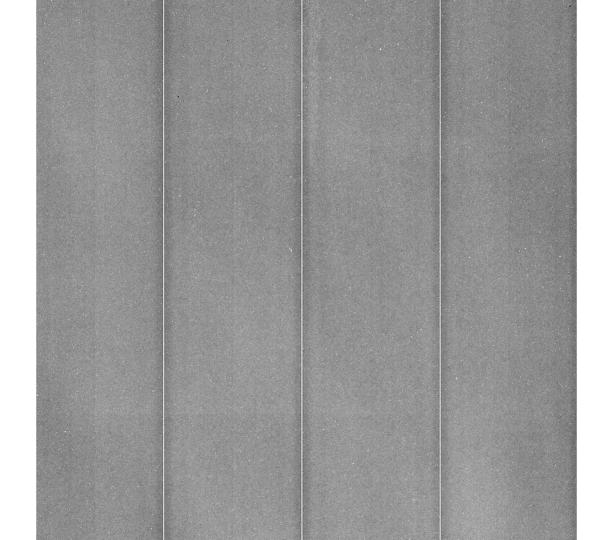
Know your SPIRou data!

Étienne Artigau for the SPIRou DRS team:

François Bouchy, Claire Moutou, Neil Cook, Isabelle Boisse, Jean-François Donati, Pascal Fouqué, Melissa Hobson, Andres Carmona, Kanoa Withington, Chris Usher

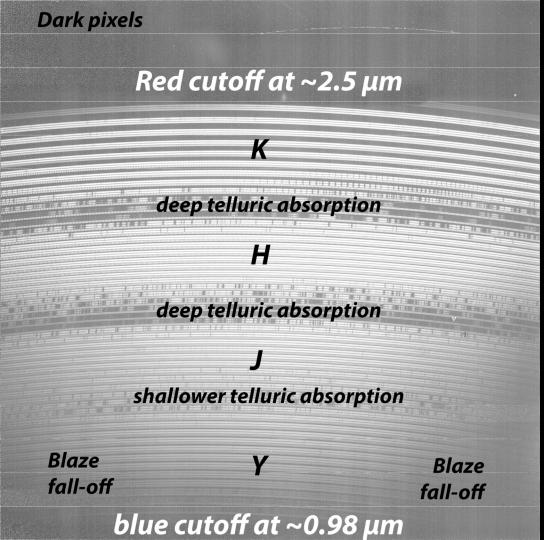
You've got some SPIRou data?

- In 2019A and 2019B, SPIRou is the most requested CFHT instrument.
- Lots of PI targets have been observed since February
- You want to get started writing papers... but you want to know what the data will looks like.


The Grand Plan

- Pls will be provided science-ready data through the CADC archive
- The data package includes a number of intermediate
 - Single spectrum (all orders merged) from 0.98-2.45µm, CCF and polarization products
 - All (known) instrumental effects are removed
 - Relevant intermediate products are provided
 - Raw and really raw frames are provided
- Calibrated data will be re-processed frequently as the DRS improves
 - PI-friendly description of the updates on the SPIRou website
 - Don't panic when your data is re-released...

[ramp]


- 4096x4096xN
 - These are huge files (up to a few Gb each)!
- Individual images taken every 5.52s; used to compute the per-pixel timederivative of flux
- The ramp is generally *not saved* by IR instruments
 - Not saved in WIRCam
 - We save these frames in the hope of improving the per-frame filtering of data in the future

r.fits

[ramp]

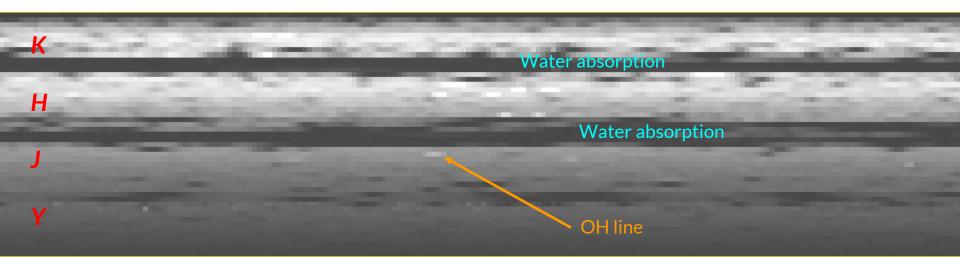
- Accumulation of signal for a bright A star over 56 frames
- Middle of H band only

o.fits

[object]

- Ext 1: The 'slope' image, this is the closest analog to a CCD image
- Ext 2: Intercept of the slope. This is more or less the equivalent of a bias. *Mostly for engineering*.
- Ext 3: Formal error on the slope. To be used for pixel quality assessment.
- Ext 4: Number of unsaturated readouts (normally equal to Nread). To be used for pixel quality assessment.

o.fits

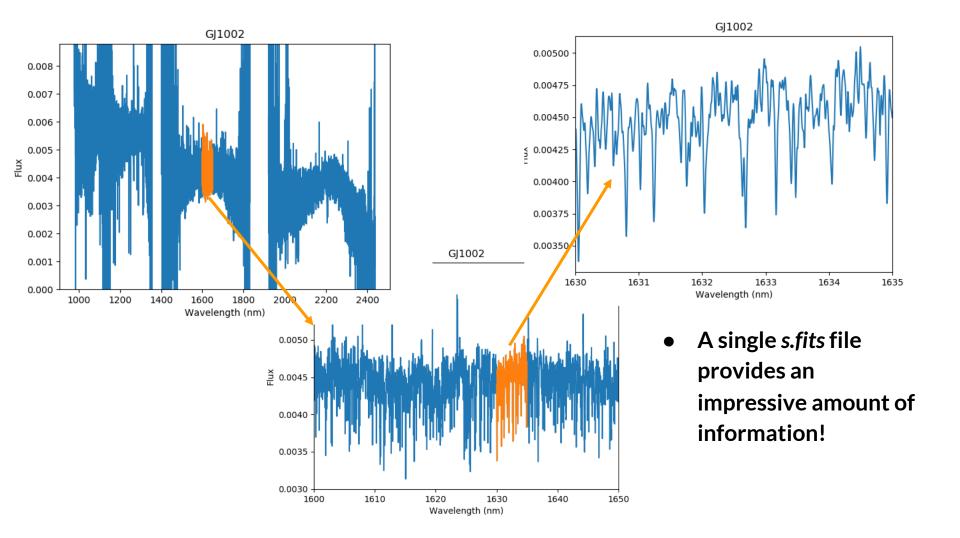

[object]

- Ext 1: The 'slope' image, this is the closest analog to a CCD image
- Ext 2: Intercept of the slope. This is more or less the equivalent of a bias. *Mostly for engineering*.
- Ext 3: Formal error on the slope. To be used for pixel quality assessment.
- Ext 4: Number of unsaturated readouts (normally equal to Nread). To be used for pixel quality assessment.

[extracted]

- As FITS images:
- Ext 1-4: AB, A, B and C extracted spectra, 4088x49 pixels
- Ext 5-8: AB, A, B and C wavelength maps, 4088x49 pixels
- Ext 9-12: AB, A, B and C blaze maps, 4088x49 pixels

s.fits


[science]

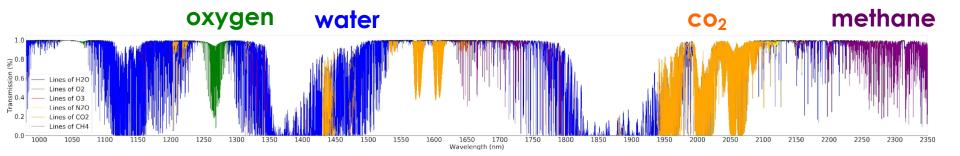
- Stitched spectrum over the entire 0.98-2.45µm domain
 - As FITS binary tables
 - Extensions for AB, A, B and C fibre configurations
- No discontinuity at the edges of order
 - Blaze-weighted mean of overlapping orders
 - Tapered weight fall-off at the end redder orders
 - By construction, cannot create artifacts smaller than 200 km/s

s.fits

[science]

- Comes into two flavours
 - Uniform in wavelength spacing (0.05 nm/pixel)
 - Uniform in velocity space (1 km/s/pixel)
- Convenient for cross-correlation and convolution over the entire domain
- Provided without telluric correction for AB, A, B and C
- Provided with telluric correction for AB
 - Deep water bands are filled with NaNs

[polarimetry]

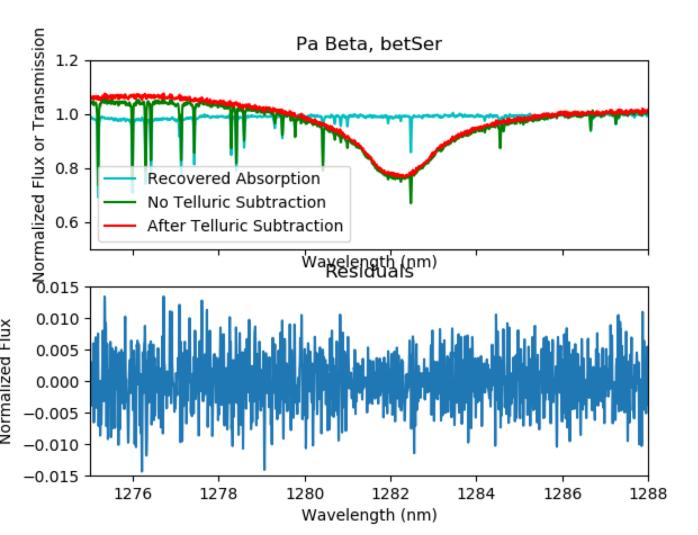

- Only available for full polarimetric sequences
- Similar to e.fits in format: 4088x49 as a FITS image
 - Polarized spectrum and corresponding errors
 - Intensity spectrum and corresponding errors
 - Null spectrum
 - Blaze and wavelength spectra

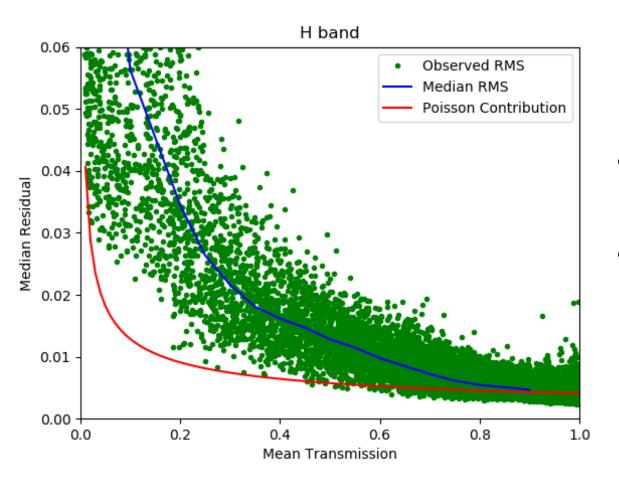
v.fits

[velocity]

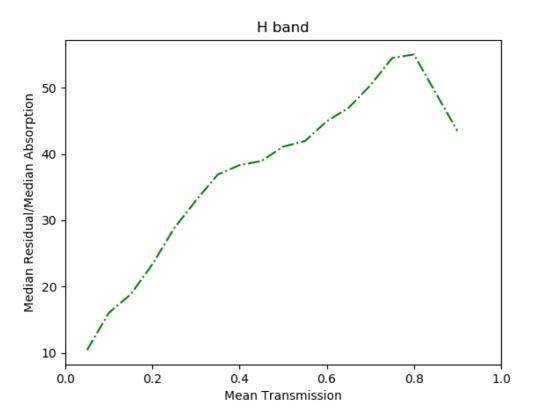
- The cross-correlation function of RV data with the CC mask
 - CCF line lists are expected to evolve
 - Ultimately one per spectral sub-type
- Think of it as the mean line profile
 - 49+1 CCF profiles

Telluric subtraction



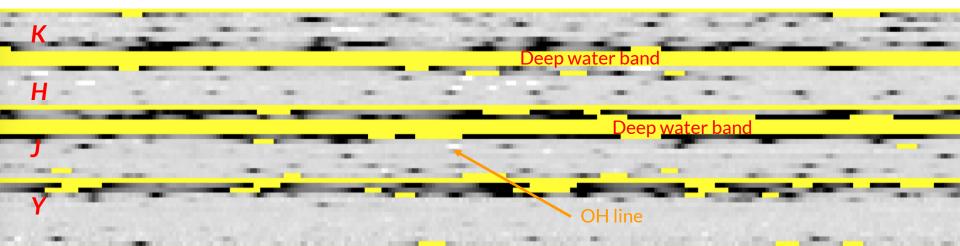

Telluric subtraction

- Telluric lines are all over the place in the near-infrared
- The DRS provides telluric-subtracted spectra
- You *must* check the level of absorption at your favorite wavelength before interpreting the data!


Telluric subtraction

- Observe ~2 hot bright rapidly rotating hot stars every night
- Construct a library of line-of-sight absorbers
- Subtract telluric absorption from all science data
- ... does it work?
 - Yes, but it comes with some limitations

- Telluric absorption residuals increase slowly with absorption
- In a perfect world, one would only get an increased Poisson noise due to lower transmission



- The fractional quality of telluric correction depends on absorption
- For moderate absorption (0-50%), lines are subtracted to better than 1 part in 40.
 - If you have an SNR of 100 and the local absorption is <10%...
 you are all fine!
- Deep absorption (>50%) is more poorly corrected

t.fits

[tellurics]

- Ext 1: Same as *e.fits* but after telluric correction
 - Only for AB; we assume that tellurics do not affect polarisation
- Ext 2: Recovered telluric absorption
 - \circ $\,$ NaNs where absorption is too strong for proper reconstruction

You want to re-reduce your data!

- Be careful what you wish for!
- Unless you have pretty unusual requirements and/or exotic data processing strategies, this is unnecessary
- If you think you've found a bug with your SPIRou data (it happens): tell the SPIRou instrument scientist!

You want to re-reduce your data!

- Be very sure that your analysis cannot be done with the existing DRS outputs
 - e.g.: you do not trust the DRS telluric subtraction (how dare you!) and want to use use your favorite Earth atmosphere model
 - Get the merged (s.fits) data and start with the extension prior to telluric subtraction
 - e.g.: You want to stitch the 49 orders yourself
 - Start from the *e.fits* file, there you have the flux, wavelength and blaze data.

You want to re-reduce your data!

- The SPIRou DRS is open-source and available on github
 - All written in python 3
 - Should work on Mac, Linux and Windows
 - Contact us for github access
 - We are currently testing portability
- If you want to reprocess from the *o.fits* or *r.fits* files, you will need to download a large set telluric stars and calibrations
- The full reprocessing of calibrations takes >1 week of data-crunching

What is not (yet?) in the DRS

- Improved telluric subtraction in the deepest water bands
 - Should be possible by fitting stellar models for the telluric stars
 - Not for pRV, but may be useful for other science
- Proper calibration of the SED
 - SPIRou is not designed for spectro-photometry... but we'll do our best!
 - 2MASS photometry could be useful here
- Noise propagation all the way to the stitched spectrum

What is not (yet?) in the DRS

- OH sky line subtraction
 - Will use a technique similar to telluric absorption
- Detailed line-spread-function calibration
 - Important for model convolution and fitting
- Convenience tools to manipulate DRS outputs
 - Stand-alone examples of read/plot
 - Merge a set of *s*.*fits* files into a single spectrum
 - Template-matching PRV
 - Very preliminary ~1 m/s night-to-night RMS for Barnard with latest DRS version
 - Needs to be reproduced over >1 run, various stars