Studying weak magnetic fields in white dwarf stars with ESPaDOnS

John Landstreet Stefano Bagnulo

University of Western Ontario London, Upper Canada & Armagh Observatory & Planetarium Armagh, Province of Ulster

21 May 2019

White dwarfs

White dwarfs are end state of stellar evolution for ~95% of stars.

During red giant and asymptotic giant branch evolution, star loses much mass and collapses.

Tiny, degenerate core survives as dense metallike body of M ~ M_{SUN}, R ~ R_{EARTH} that simply cools slowly : a white dwarf (WD)
WDs potentially carry (conceal?) many clues

about prior evolution ! Magnetism is one clue.

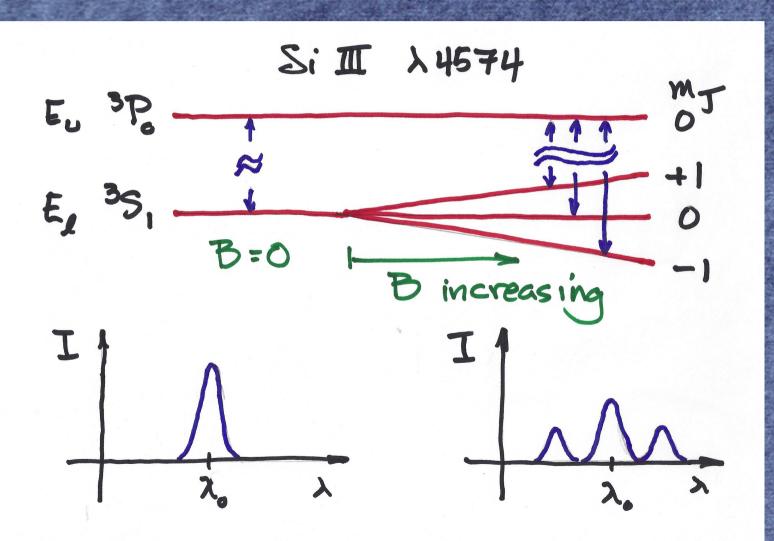
21 May 2019

Why are magnetic fields important in stellar physics ?

Magnetic fields alter spectral lines, greatly change pulsation modes, and produce « activity ». Fields strongly affect interpretation of observations A magnetic field can stabilise a stellar atmosphere and substantially alter its physical structure (e.g. by supressing convection, or by Lorentz forces) Fields greatly affect transport of angular momentum and mixing - during accretion or mass loss phases, and inside the star at any time

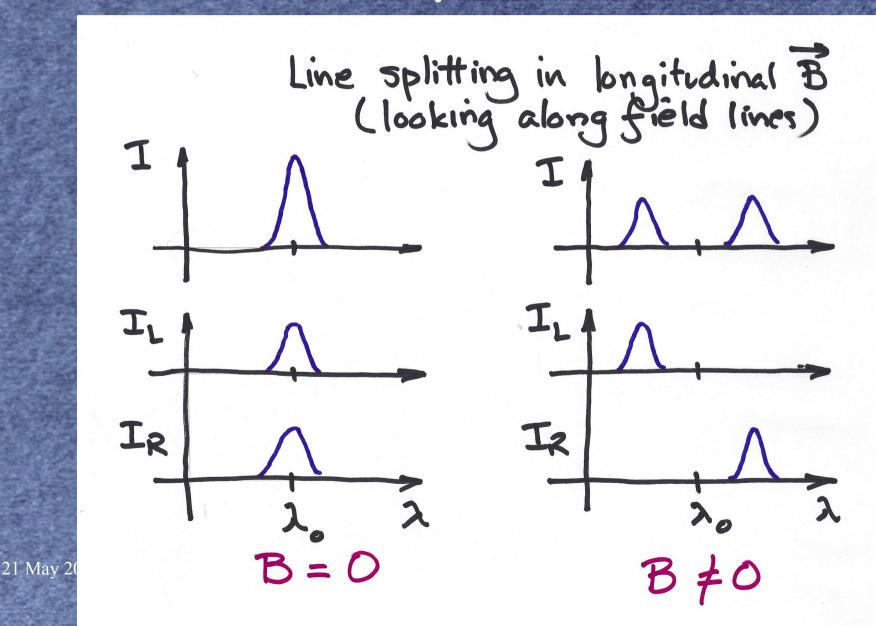
21 May 2019

A bit of history

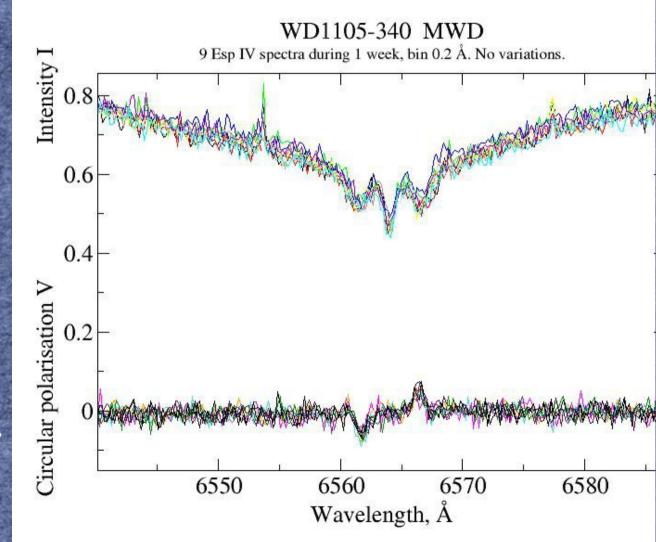

1947 : Horace Babcock discovered a kG magnetic field in a main sequence A star. Further fields were found in other such stars. In 1964 L. Woltjer suggested that magnetic flux conservation from main sequence to neutron stars could yield B~10¹² G. Discovery of pulsars in 1967, with B~10¹² G, gave credibilty to idea of flux conservation. Would white dwarfs have B~10° G ? May 2019 **CFHT Users Meeting Montreal**

How are magnetic fields detected and measured ?

To detect most stellar magnetic fields, we use the **Zeeman effect**. In many hot stars, this is the **only** detectable symptom of a field. Zeeman effect splits a single spectral line into multiple components, separated in wavelength and polarised


• Components are separated by roughly $\Delta\lambda(A) \sim 5 \ 10^{-13} \ B(G) \ \lambda^2(A) \sim 13 \ A/MG$

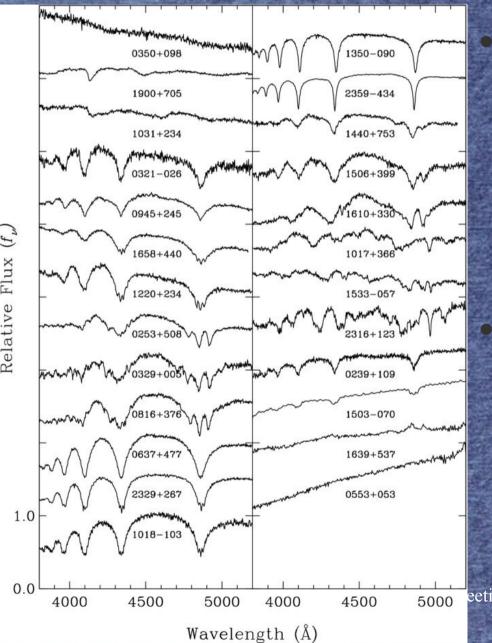
Zeeman effect in the intensity spectrum


21 May 2019

Zeeman effect also leads to line circular polarisation

Zeeman splitting and polarisation

Clear Zeeman splitting and polarisation in ESPaDOnS spectrum of WD1105-340 <|B|> ~ 120 kG <Bz> ~ - 30 kG


History (2) : Search for WD fields B > ~ 5 MG fields should produce easily seen Zeeman splitting of >~50 A Among ~200 WDs known in 1970, no Zeeman **splitting noted** => fields are rare/absent, or small, or «unrecognisable», or buried... First really sensitive survey using polarimetry gave NO detections (Angel & Landstreet 1970) Jim Kemp searched for continuum circular polarisation. I proposed Grw+70 8247....

21 May 2019

Megagauss magnetic fields ! Circular polarisation found in Grw+70 8247. Interpreted as resulting from field of B~107 G (now known to be $3 \ 10^8$ G) (Kemp+ 70) Further searches during next 30 yr, for polarisation or Zeeman splitting, discovered ~1 or 2 new MWD/yr, often exotic, puzzling objects, with 1 < B < 1000 MG. In 1990s first evidence found of fields below 1 MG (Schmidt+Smith 94, Koester+ 98)

21 May 2019

Survey field detections

Most of ~600 MWDs now known are from single low-resolution I spectra (e.g. Gianninas et al 11, SDSS) R~2000 and S/N~10 => lower limit to field detection is ~2 MG. Easy detection 2-80 MG Upper limit $\sim 10^9$ G ?

eeting Montreal

Stellar magnetism in context

We now have magnetic field detections in (some) stars in all major phases in HR diagram!!

- PMS stars: T Taus (dynamo) and a few Herbig AeBe stars (fossil)
- Main sequence (MS): rapidly rotating low mass stars (dynamo); small fraction of O, B, A (Ap/Bp) stars (fossil)
- Giant stars: a few Ap descendant(?) fields, weak dynamo fields in both red giant & AGB stars - Some white dwarfs have MGauss fossil fields. Neutron stars are formed with TGauss fossil fields

CFHT Users Meeting Montreal

21 May 2019

Global evolution of fields

From observational evidence that (some) fields occur in most major evolution stages, we look to theory to interpret the observed evolution

Low mass stars : current dynamos occur at most stages until final collapse to white dwarf. But why are a few % of WDs left with huge fossil fields ? (are these the descendants of low mass stars?)

In more massive stars, situation is very strange! T Tau (dynamo) -> Herbig (fossil) -> MS (fossil) -> RG, AGB (dynamo) -> white dwarf or neutron star (fossil). This complex evolution is far from understood. May 2019 CFHT Users Meeting Montreal

How to make progress ?

Theorists model single star magnetic evolution (Mathis, Brun, Brathwaite, etc). Others consider MWD formation channels through binary common envelope phases (Tout 08, Wickramasinghe et al 14, etc) Observers/modellers can provide (1) distribution of MWD field strengths as function of WD mass, age, chemistry, etc, and (2) detailed models of individual stars

21 May 2019

The super-weak field regime

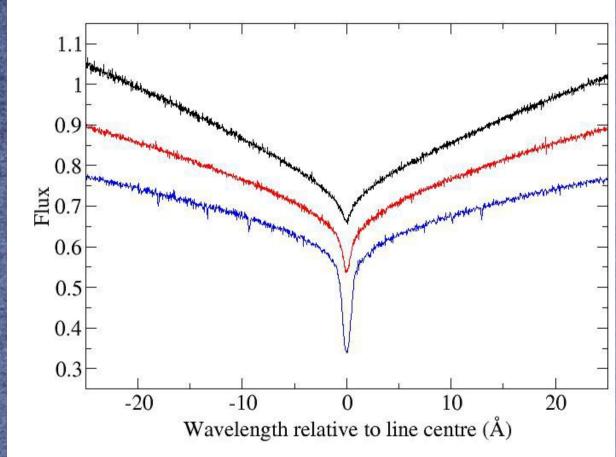
Very few MWDs are known with fields below ~2 MG. Is deficit real, or observational limit ? Stefano Bagnulo and I have been studying the super-weak field regime - to find more MWDs in this range, and model them • We are exploring all available avenues to search for and characterise such stars ... how can we get the smallest measurement uncertainties ?

21 May 2019

High precision WD field measures

Measuring small <|B|> depends on resolution.
 R~10³ detects ~1 MG, R~5 10⁴ detects 30 kG

 Small <Bz> requires spectropolarimetry, resolution and aperture. Best precision now : 85 G (40 Eri B : ESPaDOnS : Landstreet+15)


 Facility spectropolarimeters in visible : ESPaDOnS (V<15, no continuum measures, but resolve Halpha core), ESO FORS (low R but big mirror), WHT ISIS (intermediate)

21 May 2019

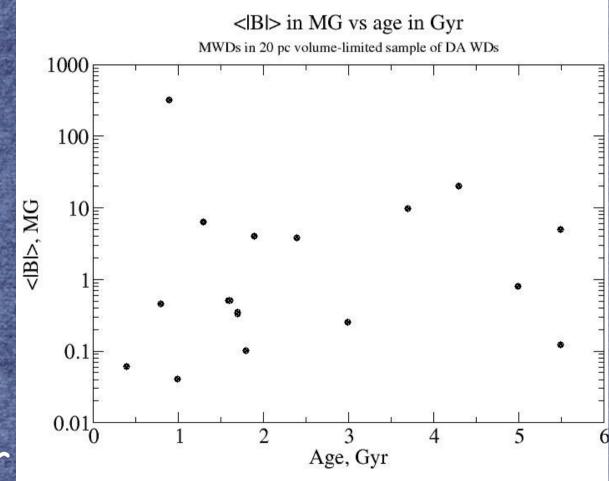
Why is resolution useful for WDs ?

Hy, Hp, Ha in DA WD 40 Eri B Clearly Ha offers a potentially very useful line for WD polarimetry and intensity spectroscopy

21 May 2019

20-pc volume-limited survey

A volume limited WD sample contains a fossil record of 95% of completed local stellar evolution (mostly of B-A-F stars)


We are surveying 20-pc volume for weakest fields. Among H-rich WDs, we find 20% have fields with <|B|> > few kG, more than half with <|B|> < 1 MG.

Too large a fraction to be produced by flux conservation from magnetic Ap-Bp stars

21 May 2019

Field evolution with age ?

On upper MS, fossil fields decline strongly in $\sim 10^8$ yr (Landstreet+08) No such evolution in fossil fields of magnetic DAs even over 5 10° yr

21 May 2019

Conclusions

WDs have important clues about WD formation channels. One clue is magnetism (3 kG < <|B|> < 1 TG) Tiny number (~25) known with <|B|> < 1 MG ESPaDOnS powerful for finding new weak-field WDs Survey of DA stars in 20 pc volume shows that about 20% are magnetic, too many to be due to flux conservation from upper main sequence magnetic stars. Close binary merger origin ? Or ... ? Unlike magnetic Ap/Bp stars, magnetic WDs show no sign of field decay even over 5 Gyr

21 May 2019

Thank you for your interest