SNR-QSO with ESPaDOnS: Tests, impacts, and feasibility

Claire Moutou, January 27 2016, update August 18 2016

The scope of the document is to review the tests of the SNR-QSO mode with ESPaDOnS (ESP) in January 2016, to review applicability for this mode as well as follow up on its performance on subsequent 2016 data.

1. Preliminary notes

In January 2016, the ESP control commands were modified in order to take into account a goal SNR and to stop the exposure once the SNR calculated by the exposuremeter has achieved the requested goal. The exposuremeter SNR value is calculated from the received flux per second and calibrated into SNR at 730nm; this calibration includes a necessary correction for the spectrograph (air) temperature, (see sec. 5). The transmission evolution due to mirror degradation with time from aluminization is not taken into account, as for the ETC.

Note that for exposure times <15s, the SNR from the exposuremeter is less accurate and underestimates the real SNR –this should **not be used directly to avoid saturating spectra**.

In **Polar** mode, each exposure of a sequence is treated independently and thus the **4 exposure times have different exposure times**. Changing the individual exposure times in a polar sequence has an effect on the heliocentric correction of each exposure, and thus, on the final velocity profile of the spectrum. At the very small levels of polarization that ESP records, this impact can create an unwanted spectral shift and spurious polarization detections. The main goal of the tests done in January was to quantify this impact.

2. Test description

The first test (Jan 22, 2016) showed that the 'go' command executes as expected, in both modes: when the SNR goal is not achieved before the time set in the Instrument configuration, then the exposure stops normally at this value; otherwise it stops at the goal SNR value. In Polar mode, the four exposures have slightly different exposure times, and we verified that this does not cause any problem for the quicklook nor the pipeline.

The second test was to insert a SNR-mode flag in PH2, and copy the SNR goal given in PH2 into the 'go' command. This was executed successfully on Jan 25, 2016.

The third test (jan 25 and 26) was to evaluate the limits where SNR mode should be applied. We compare these spectra with the same star observed with same exposure times and varying SNR and with similar exp times and SNRs. To mimic the change of exposure time in a polarimetric sequence, we defocused the telescope during a

polarization sequence in SNR mode, in order to have equal SNR across the sequence and different exposure times.

3. Results

Jan25 test

ID-OG#	Texp max	SNR goal	Exp1	Exp2	Exp3	Exp4	Comments
odometer	[s]	_	_	_	_	_	
E93-13	60	950	Ef 50740	Ef 48440	Ef 48324	Ef 51111	Reference 0
1889425p			SNR 695	SNR 683	SNR 676	SNR 695	SNR goal not
			Texp 60	Texp 60	Texp 60	Texp 60	achieved
E97-3	45	-	Ef 49047	Ef 50848	Ef 49855	Ef 50092	Reference 1
1889429p			SNR 599	SNR 602	SNR 597	SNR 598	no SNR goal
			Texp 45	Texp 45	Texp 45	Texp 5	
E93-15	60	500	Ef 52221	Ef 43292	Ef 22723	Ef 4094	SNR-mode
1889441p			SNR 501	SNR 501	SNR 467	SNR 258	with defocus
			Texp 32.4	Texp 37.0	Texp 60	Texp 60	

For each spectrum, the mean stellar (LSD) profile was calculated. In red, the SNRmode profile minus the Reference 0 profile. In white, for comparison, a subtraction of the profiles of both reference spectra. Left: intensity, right: polarization Stokes V. The plots have been shifted for clarity. Note the scale: we look at the 10⁻⁴ level!

Conclusion of Jan25: When the flux variations are **extreme** (facteur ~15) during a polar sequence, spurious signals are indeed produced. More data with milder variations are needed. A SNR-mode sequence w/o flux variations is also missing.

Jan26 test										
ID-OG# odometer	Texp max [s]	SNR goal	Exp1	Exp2	Exp3	Exp4	Comments			
E93-2	180	300	Ef 8358	Ef 8301	Ef 8370	Ef 8516	SNR mode			
1889635p			SNR 300	SNR 303	SNR 300	SNR 301	normal			
set1			Texp 67.5	Texp 69	Texp 68.1	Texp 66.8	3% var etime			
E93-2	180	300	Ef 9118	Ef 9012	Ef 8581	Ef 8697	SNR mode			
1889639p			SNR 301	SNR 302	SNR 301	SNR 304	5% var etime			
set2			Texp 62.5	Texp 63.8	Texp 65.2	Texp 65.6				
E93-2	180	300	Ef 8208	Ef 8710	Ef 9340	Ef 8709	SNR mode			
1889643p			SNR 303	SNR 300	SNR 302	SNR 302	14% var			
set3			Texp 70.5	Texp 65.2	Texp 61.3	Texp 64.3	etime			
E93-2	180	300	Ef 6919	Ef 8390	Ef 5812	Ef 7824	SNR mode			
1889647p			SNR 301	SNR 300	SNR 301	SNR 301	35% var			
set4			Texp 82.3	Texp 67.8	Texp 96.4	Texp 73.1	etime			
E93-2	180	300	Ef 7326	Ef 8418	Ef 5904	Ef 7408	SNR mode			
1889651p			SNR 301	SNR 300	SNR 301	SNR 301	35% var			
set5			Texp 77.2	Texp 67.7	Texp 96.6	Texp 77.2	etime			
E93-2	180	300	Ef 8606	Ef 8943	Ef 8636	Ef 7857	SNR mode			
1889655p			SNR 302	SNR 300	SNR 302	SNR 301	17% var			
set6			Texp 66.1	Texp 63.4	Texp 66.6	Texp 71.9	etime			
E93-2	180	300	Ef 7950	Ef 7720	Ef 8539	Ef 7718	SNR mode			
1889659p			SNR 301	SNR 301	SNR 301	SNR 301	11% var			
set7			Texp 69.9	Texp 74	Texp 65.8	Texp 73.6	etime			
E93-16	180	-	Ef 8464	Ef 7934	Ef 8572	Ef 8565	Etime mode			
1889663p			SNR 499	SNR 482	SNR 502	SNR 502	reference			
set8			Texp 180	Texp 180	Texp 180	Texp 180				

Comparison of intensity and polar LSD profiles for set1 (SNR mode in stable conditions), set4 (SNR mode in variable conditions) and set8 (etime mode**). No** *spurious detection in polar is seen*. Small depth differences in intensity spectra, probably due to the difference of SNR between set8 (~500) and others (~300).

None of the sets with modified flux within the sequence produces a spurious signal in polarization. There is always a small difference in intensity profile depth, but this has no consequence.

Conclusion: even with 35% variations in the flux and exposure times during a polarization sequence, there is no appearance of spurious polar signals. It is very encouraging and means **we can safely use the SNR mode in most clear conditions**, when flux variations only arise from the unavoidable centering and/or slight turbulence fluctuations. I would not recommend using SNR mode in polar when flux variations are larger than \sim 30% over the sequence, to be safe.

- 4. Applicability and limits of ESP SNR-QSO
- **SNR-QSO mode can always be applied in Star+Sky and Star-Only modes**, as long as a SNR goal is given by the PI. This could be the default mode in spectroscopy. One caveat is the case of variable stars, or stars of ill-known temperatures, for which it would be better to slightly increase rather than decrease the e-time in real time. These cases are not dealt with in the current software and we should urge PIs to put some margin (ie, higher SNR goals) if they have doubts.
- SNR-QSO can be used (as coded, with 4 different exposure times) in the **Polar mode when conditions are clear and for certain types of stars.**
- Unsuitable stars may be spectroscopic binaries, fast rotators, extreme variables. So the PI should have the possibility to opt out of SNR mode.

- Unsuitable conditions for SNR mode include cloudy nights where the flux may vary by a factor > 1.3 during a sequence. These may be bad data anyway for spectropolarimetry since the photocenter of exposures varies.
- The use of SNR QSO is thus a **combination of PI option and sky conditions**. It should be possible for the observer (or the software) to **bypass** the PI willingness to use SNR mode if conditions are not good enough, resulting in very different exposure times in a polar sequence. We should avoid situations where some exposures of a polar sequence are stopped by etime and others by SNR.
- Enforcing the use of the SNR mode should be done at PH2 level, since **we need precise information**. Required parameters are: magnitude, Teff (FT), SNR goal (OB), maximum exposure time per exposure (in IC). Default values can be chosen for SNR_wave, IQ limit (very large impact), Airmass limit (very low impact), extinction limit (very large impact), since we try observing in any conditions with ESP. We need to **check the consistency** of these numbers beforehand, for instance when saving the OBs or the OGs and with a web application.
- Technical implication: we need a mechanism to **constantly validate the exposuremeter calibration for SNR**. It can be done daily on calibrations, when the exposure time exceeds 15s. If possible, the optical alignment of the exposuremeter should not be touched.

5. Exposuremeter calibration (update)

Verification of the exposuremeter calibration and its dependency with the temperature in the spectrograph. SNR measured by the pipeline at 730nm as a function of the SNR calculated in real time by the exposuremeter, in polar mode. In white, all data from 2015 when exposure time is >10s. In red, the most recent data, from December 2015 to January 2016. On the right, a linear dependency with ESP temperature is corrected for and the scatter is reduced. There is no temperature dependency in the spectroscopic mode.

It seems the temperature correction could be adjusted –still some scatter in high SNR regime. Most recent data may represent different thermal conditions since the installation of the GRACES walls, which could explain the need for a (minor) adjustment.

The SNR calculated for the long comparison exposures done each day of an ESP run at least once can be used to check the reliability of the exposuremeter alignment, especially in case something is moved inside the spectrograph.

SNR_expo=705 +-20 in polar mode on 60s HC exposures SNR_expo=570 +-20 in spectro-SS mode on 60s HC exposures

The plot below shows the behavior of this SNR as a function of temperature [values between 16-17° correspond to the run Q13-Nov23 to Dec03, temperature mainly decreasing during the run; values between 13-15° correspond to the January 2016 run, temperature increasing during the run]. There is no obvious trend with this parameter.

Conclusion: the SNR measured by the exposuremeter daily during a run are fairly stable and can be used to check the validity of the exposuremeter position and calibration. If more precision is needed, a procedure involving the flatfield lamp and exposures >15s could be put in place, with a frequent monitoring. That may not be needed, but we need to keep an eye on the comparison 60s exposure during runs and at checkout. If SNR drops to <500 (polar) or <350 (spectro), eg the flux drops by a factor 2, a warning should be sent to the Remote Observer and SNR-QSO should be put on hold until it is investigated.

6. Report on SNR mode performance from Feb2016 to mid August 2016

Time gain: 16A 11.5h, 16B 5.7h / 16A 391 h, 16B 95.97 h requested (3%, 6%) Time gain on programs that requested SNR mode: - in POL: 16A 5.3h, 16B 1.8h / 16A 11.7h, 16B 7.87 h validated (45%, 23%) - in S+S: 16A 5.8h, 16B 3.2h / 16A 11.6h, 16B 10.74 h validated (50%, 30%)

Comparison of the requested and measured SNR: top) at the wavelength requested by the PI, and compared to the LE pipeline measurement, bottom) at the default wavelength (730nm) and compared to the exposuremeter SNR estimate (aligned by construction). The green and red lines show 20% variation in SNR. Only validated exposures are shown.

